<< Chapter < Page Chapter >> Page >
Three Lewis structures are pictured and labeled, “a,” “b,” and “c.” Structure a shows a nitrogen atom with one lone pair of electrons single bonded to three hydrogen atoms. The structure is labeled “ammonia.” Structure b shows a nitrogen atom with one lone pair of electrons single bonded to two hydrogen atoms and a chlorine atom with three lone pairs of electrons. The structure is labeled “chloramine.” Structure c shows two nitrogen atoms, each with one lone pair of electrons, single bonded to one another and each single bonded to two hydrogen atoms. The structure is labeled “hydrazine.”

Chloramine, NH 2 Cl, results from the reaction of sodium hypochlorite, NaOCl, with ammonia in basic solution. In the presence of a large excess of ammonia at low temperature, the chloramine reacts further to produce hydrazine, N 2 H 4 :

NH 3 ( a q ) + OCl ( a q ) NH 2 Cl ( a q ) + OH ( a q )
NH 2 Cl ( a q ) + NH 3 ( a q ) + OH ( a q ) N 2 H 4 ( a q ) + Cl ( a q ) + H 2 O ( l )

Anhydrous hydrazine is relatively stable in spite of its positive free energy of formation:

N 2 ( g ) + 2H 2 ( g ) N 2 H 4 ( l ) Δ G f ° = 149.2 kJ mol 1

Hydrazine is a fuming, colorless liquid that has some physical properties remarkably similar to those of H 2 O (it melts at 2 °C, boils at 113.5 °C, and has a density at 25 °C of 1.00 g/mL). It burns rapidly and completely in air with substantial evolution of heat:

N 2 H 4 ( l ) + O 2 ( g ) N 2 ( g ) + 2H 2 O ( l ) Δ H ° = −621.5 kJ mol 1

Like ammonia, hydrazine is both a Brønsted base and a Lewis base, although it is weaker than ammonia. It reacts with strong acids and forms two series of salts that contain the N 2 H 5 + and N 2 H 6 2+ ions, respectively. Some rockets use hydrazine as a fuel.

Phosphorus hydrogen compounds

The most important hydride of phosphorus is phosphine, PH 3 , a gaseous analog of ammonia in terms of both formula and structure. Unlike ammonia, it is not possible to form phosphine by direct union of the elements. There are two methods for the preparation of phosphine. One method is by the action of an acid on an ionic phosphide. The other method is the disproportionation of white phosphorus with hot concentrated base to produce phosphine and the hydrogen phosphite ion:

AlP ( s ) + 3H 3 O + ( a q ) PH 3 ( g ) + Al 3+ ( a q ) + 3H 2 O ( l )
P 4 ( s ) + 4OH ( a q ) + 2H 2 O ( l ) 2HPO 3 2− ( a q ) + 2PH 3 ( g )

Phosphine is a colorless, very poisonous gas, which has an odor like that of decaying fish. Heat easily decomposes phosphine ( 4PH 3 P 4 + 6H 2 ) , and the compound burns in air. The major uses of phosphine are as a fumigant for grains and in semiconductor processing. Like ammonia, gaseous phosphine unites with gaseous hydrogen halides, forming phosphonium compounds like PH 4 Cl and PH 4 I. Phosphine is a much weaker base than ammonia; therefore, these compounds decompose in water, and the insoluble PH 3 escapes from solution.

Sulfur hydrogen compounds

Hydrogen sulfide, H 2 S, is a colorless gas that is responsible for the offensive odor of rotten eggs and of many hot springs. Hydrogen sulfide is as toxic as hydrogen cyanide; therefore, it is necessary to exercise great care in handling it. Hydrogen sulfide is particularly deceptive because it paralyzes the olfactory nerves; after a short exposure, one does not smell it.

The production of hydrogen sulfide by the direct reaction of the elements (H 2 + S) is unsatisfactory because the yield is low. A more effective preparation method is the reaction of a metal sulfide with a dilute acid. For example:

FeS ( s ) + 2H 3 O + ( a q ) Fe 2+ ( a q ) + H 2 S ( g ) + 2H 2 O ( l )

It is easy to oxidize the sulfur in metal sulfides and in hydrogen sulfide, making metal sulfides and H 2 S good reducing agents. In acidic solutions, hydrogen sulfide reduces Fe 3+ to Fe 2+ , MnO 4 to Mn 2+ , Cr 2 O 7 2− to Cr 3+ , and HNO 3 to NO 2 . The sulfur in H 2 S usually oxidizes to elemental sulfur, unless a large excess of the oxidizing agent is present. In which case, the sulfide may oxidize to SO 3 2− or SO 4 2− (or to SO 2 or SO 3 in the absence of water):

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask