<< Chapter < Page Chapter >> Page >
Δ S ° = ν S 298 ° (products) ν S 298 ° (reactants)

Here, ν represents stoichiometric coefficients in the balanced equation representing the process. For example, Δ S ° for the following reaction at room temperature

m A + n B x C + y D,

is computed as the following:

= [ x S 298 ° ( C ) + y S 298 ° ( D ) ] [ m S 298 ° ( A ) + n S 298 ° ( B ) ]

[link] lists some standard entropies at 298.15 K. You can find additional standard entropies in Appendix G .

Standard Entropies (at 298.15 K, 1 atm)
Substance S 298 ° (J mol −1 K −1 )
carbon
C( s , graphite) 5.740
C( s , diamond) 2.38
CO( g ) 197.7
CO 2 ( g ) 213.8
CH 4 ( g ) 186.3
C 2 H 4 ( g ) 219.5
C 2 H 6 ( g ) 229.5
CH 3 OH( l ) 126.8
C 2 H 5 OH( l ) 160.7
hydrogen
H 2 ( g ) 130.57
H( g ) 114.6
H 2 O( g ) 188.71
H 2 O( l ) 69.91
HCI( g ) 186.8
H 2 S( g ) 205.7
oxygen
O 2 ( g ) 205.03

Determination of δ S °

Calculate the standard entropy change for the following process:

H 2 O ( g ) H 2 O ( l )

Solution

The value of the standard entropy change at room temperature, Δ S 298 ° , is the difference between the standard entropy of the product, H 2 O( l ), and the standard entropy of the reactant, H 2 O( g ).

Δ S 298 ° = S 298 ° ( H 2 O ( l ) ) S 298 ° ( H 2 O ( g ) ) = ( 70.0 J mol −1 K −1 ) ( 188.8 J mol −1 K −1 ) = −118.8 J mol −1 K −1

The value for Δ S 298 ° is negative, as expected for this phase transition (condensation), which the previous section discussed.

Check your learning

Calculate the standard entropy change for the following process:

H 2 ( g ) + C 2 H 4 ( g ) C 2 H 6 ( g )

Answer:

−120.6 J mol −1 K −1

Got questions? Get instant answers now!

Determination of δ S °

Calculate the standard entropy change for the combustion of methanol, CH 3 OH:

2 CH 3 OH ( l ) + 3 O 2 ( g ) 2 CO 2 ( g ) + 4 H 2 O ( l )

Solution

The value of the standard entropy change is equal to the difference between the standard entropies of the products and the entropies of the reactants scaled by their stoichiometric coefficients.

Δ S ° = Δ S 298 ° = ν S 298 ° (products) ν S 298 ° (reactants)
[ 2 S 298 ° ( CO 2 ( g ) ) + 4 S 298 ° ( H 2 O ( l ) ) ] [ 2 S 298 ° ( CH 3 OH ( l ) ) + 3 S 298 ° ( O 2 ( g ) ) ] = { [ 2 ( 213.8 ) + 4 × 70.0 ] [ 2 ( 126.8 ) + 3 ( 205.03 ) ] } = -161.1 J/mol·K

Check your learning

Calculate the standard entropy change for the following reaction:

Ca ( OH ) 2 ( s ) CaO ( s ) + H 2 O ( l )

Answer:

24.7 J/mol·K

Got questions? Get instant answers now!

Key concepts and summary

The second law of thermodynamics states that a spontaneous process increases the entropy of the universe, S univ >0. If Δ S univ <0, the process is nonspontaneous, and if Δ S univ = 0, the system is at equilibrium. The third law of thermodynamics establishes the zero for entropy as that of a perfect, pure crystalline solid at 0 K. With only one possible microstate, the entropy is zero. We may compute the standard entropy change for a process by using standard entropy values for the reactants and products involved in the process.

Key equations

  • Δ S ° = Δ S 298 ° = ν S 298 ° (products) ν S 298 ° (reactants)
  • Δ S = q rev T
  • Δ S univ = Δ S sys + Δ S surr
  • Δ S univ = Δ S sys + Δ S surr = Δ S sys + q surr T

Chemistry end of chapter exercises

What is the difference between Δ S , Δ S °, and Δ S 298 ° for a chemical change?

Got questions? Get instant answers now!

Calculate Δ S 298 ° for the following changes.

(a) SnCl 4 ( l ) SnCl 4 ( g )

(b) CS 2 ( g ) CS 2 ( l )

(c) Cu ( s ) Cu ( g )

(d) H 2 O ( l ) H 2 O ( g )

(e) 2 H 2 ( g ) + O 2 ( g ) 2 H 2 O ( l )

(f) 2 HCl ( g ) + Pb ( s ) PbCl 2 ( s ) + H 2 ( g )

(g) Zn ( s ) + CuSO 4 ( s ) Cu ( s ) + ZnSO 4 ( s )

(a) 107 J/K; (b) −86.4 J/K; (c) 133.2 J/K; (d) 118.8 J/K; (e) −326.6 J/K; (f) −171.9 J/K; (g) −7.2 J/K

Got questions? Get instant answers now!

Determine the entropy change for the combustion of liquid ethanol, C 2 H 5 OH, under standard state conditions to give gaseous carbon dioxide and liquid water.

Got questions? Get instant answers now!

Determine the entropy change for the combustion of gaseous propane, C 3 H 8 , under standard state conditions to give gaseous carbon dioxide and water.

100.6 J/K

Got questions? Get instant answers now!

“Thermite” reactions have been used for welding metal parts such as railway rails and in metal refining. One such thermite reaction is Fe 2 O 3 ( s ) + 2 Al ( s ) Al 2 O 3 ( s ) + 2 Fe ( s ) . Is the reaction spontaneous at room temperature under standard conditions? During the reaction, the surroundings absorb 851.8 kJ/mol of heat.

Got questions? Get instant answers now!

Using the relevant S 298 ° values listed in Appendix G , calculate S 298 ° for the following changes:

(a) N 2 ( g ) + 3 H 2 ( g ) 2 NH 3 ( g )

(b) N 2 ( g ) + 5 2 O 2 ( g ) N 2 O 5 ( g )

(a) −198.1 J/K; (b) −348.9 J/K

Got questions? Get instant answers now!

From the following information, determine Δ S 298 ° for the following:

N ( g ) + O ( g ) NO ( g ) Δ S 298 ° = ?

N 2 ( g ) + O 2 ( g ) 2 NO ( g ) Δ S 298 ° = 24.8 J/K

N 2 ( g ) 2 N ( g ) Δ S 298 ° = 115.0 J/K

O 2 ( g ) 2 O ( g ) Δ S 298 ° = 117.0 J/K

Got questions? Get instant answers now!

By calculating Δ S univ at each temperature, determine if the melting of 1 mole of NaCl( s ) is spontaneous at 500 °C and at 700 °C.
S NaCl ( s ) ° = 72.11 J mol·K S NaCl ( l ) ° = 95.06 J mol·K Δ H fusion ° = 27.95 kJ/mol

What assumptions are made about the thermodynamic information (entropy and enthalpy values) used to solve this problem?

As Δ S univ <0 at each of these temperatures, melting is not spontaneous at either of them. The given values for entropy and enthalpy are for NaCl at 298 K. It is assumed that these do not change significantly at the higher temperatures used in the problem.

Got questions? Get instant answers now!

Use the standard entropy data in Appendix G to determine the change in entropy for each of the reactions listed in [link] . All are run under standard state conditions and 25 °C.

Got questions? Get instant answers now!

Use the standard entropy data in Appendix G to determine the change in entropy for each of the reactions listed in [link] . All are run under standard state conditions and 25 °C.

(a) 2.86 J/K; (b) 24.8 J/K; (c) −113.2 J/K; (d) −24.7 J/K; (e) 15.5 J/K; (f) 290.0 J/K

Got questions? Get instant answers now!

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask