<< Chapter < Page Chapter >> Page >
This module covers two important theorems, including the fundamental theorem of calculus.

We begin this section with a result that is certainly not a surprise, but we will need it at various places in later proofs, so it's good to state it precisely now.

Suppose f I ( [ a , b ] ) , and suppose a < c < b . Then f I ( [ a , c ] ) , f I ( [ c , b ] ) , and

a b f = a c f + c b f .

Suppose first that h is a step function on [ a , b ] , and let P = { x 0 < x 1 < ... < x n } be a partition of [ a , b ] such that h ( x ) = a i on the subinterval ( x i - 1 , x i ) of P . Of course, we may assume without loss of generality that c is one of the points of P , say c = x k . Clearly h is a step function on both intervals [ a , c ] and [ c , b ] .

Now, let Q 1 = { a = x 0 < x 1 < ... < c = x k } be the partition of [ a , c ] obtained by intersecting P with [ a , c ] , and let Q 2 = { c = x k < x k + 1 < ... < x n = b } be the partition of [ c , b ] obtained by intersecting P with [ c , b ] . We have that

a b h = S P ( h ) = i = 1 n a i ( x i - x i - 1 ) = i = 1 k a i ( x i - x i - 1 ) + i = k + 1 n a i ( x i - x i - 1 ) = S Q 1 ( h ) + S Q 2 ( h ) = a c h + c b h ,

which proves the theorem for step functions.

Now, write f = lim h n , where each h n is a step function on [ a , b ] . Then clearly f = lim h n on [ a , c ] , which shows that f I ( [ a , c ] ) , and

a c f = lim a c h n .

Similarly, f = lim h n on [ c , b ] , showing that f I ( [ c , b ] ) , and

c b f = lim c b h n .

Finally,

a b f = lim a b h n = lim ( a c h n + c b h n ) = lim a c h n + lim c b h n = a c f + c b f ,

as desired.

I's time for the trumpets again! What we call the Fundamental Theorem of Calculuswas discovered by Newton and Leibniz more or less simultaneously in the seventeenth century, and it is without doubt the cornerstone of all we call mathematical analysis today.Perhaps the main theoretical consequence of this theorem is that it provides a procedure for inventing “new” functions. Polynomials are rather naturalfunctions, power series are a simple generalization of polynomials, and then what? It all came down to thinking of a function of a variable x as being the area beneath a curve between a fixed point a and the varying point x . By now, we have polished and massaged these ideas into a careful, detailed development of the subject, which has substantially obscured the originalingenious insights of Newton and Leibniz. On the other hand, our development and proofs are complete, while theirs were based heavily on their intuition.So, here it is.

Fundamental theorem of calculus

Suppose f is an arbitrary element of I ( [ a , b ] ) . Define a function F on [ a , b ] by F ( x ) = a x f . Then:

  1.   F is continuous on [ a , b ] , and F ( a ) = 0 .
  2. If f is continuous at a point c ( a , b ) , then F is differentiable at c and F ' ( c ) = f ( c ) .
  3. Suppose that f is continuous on [ a , b ] . If G is any continuous function on [ a , b ] that is differentiable on ( a , b ) and satisfies G ' ( x ) = f ( x ) for all x ( a , b ) , then
    a b f ( t ) d t = G ( b ) - G ( a ) .

REMARK Part (2) of this theorem is the heart of it, the great discovery of Newton and Leibniz,although most beginning calculus students often think of part (3) as the main statement. Of course it is that third part that enables us to actually compute integrals.

Because f I ( [ a , b ] ) , we know that f I ( [ a , x ] ) for every x [ a , b ] , so that F ( x ) at least is defined.

Also, we know that f is bounded; i.e., there exists an M such that | f ( t ) | M for all t [ a , b ] . Then, if x , y [ a , b ] with x y , we have that

| F ( x ) - F ( y ) | = | a x f - a y f | = | a y f + y x f - a y f | = | y x f | y x | f | y x M = M ( x - y ) ,

so that | F ( x ) - F ( y ) | M | x - y | < ϵ if | x - y | < δ = ϵ / M . This shows that F is (uniformly) continuous on [ a , b ] . Obviously, F ( a ) = a a f = 0 , and part (1) is proved.

Next, suppose that f is continuous at c ( a , b ) , and write L = f ( c ) . Let ϵ > 0 be given. To show that F is differentiable at c and that F ' ( c ) = f ( c ) , we must find a δ > 0 such that if 0 < | h | < δ then

| F ( c + h ) - F ( c ) h - L | < ϵ .

Since f is continuous at c , choose δ > 0 so that | f ( t ) - f ( c ) | < ϵ if | t - c | < δ . Now, assuming that h > 0 for the moment, we have that

F ( c + h ) - F ( c ) = a c + h f - a c f = a c f + c c + h f - a c f = c c + h f ,

and

L = c c + h L h .

So, if 0 < h < δ , then

| F ( c + h ) - F ( c ) h - L | = | c c + h f ( t ) d t h - c c + h L h | = | c c + h ( f ( t ) - L ) d t h | c c + h | f ( t ) - L | d t h = c c + h | f ( t ) - f ( c ) | d t h c c + h ϵ h = ϵ ,

where the last inequality follows because for t [ c , c + h ] , we have that | t - c | h < δ . A similar argument holds if h < 0 . (See the following exercise.) This proves part (2).

Suppose finally that G is continuous on [ a , b ] , differentiable on ( a , b ) , and that G ' ( x ) = f ( x ) for all x ( a , b ) . Then, F - G is continuous on [ a , b ] , differentiable on ( a , b ) , and by part (2) ( F - G ) ' ( x ) = F ' ( x ) - G ' ( x ) = f ( x ) - f ( x ) = 0 for all x ( a , b ) . It then follows from [link] that F - G is a constant function C , whence,

G ( b ) - G ( a ) = F ( b ) + C - F ( a ) - C = F ( b ) = a b f ( t ) d t ,

and the theorem is proved.

  1. Complete the proof of part (2) of the preceding theorem; i.e., take care of the case when h < 0 . HINT: In this case, a < c + h < c . Then, write a c f = a c + h f + c + h c f .
  2. Suppose f is a continuous function on the closed interval [ a , b ] , and that f ' exists and is continuous on the open interval ( a , b ) . Assume further that f ' is integrable on the closed interval [ a , b ] . Prove that f ( x ) - f ( a ) = a x f ' for all x [ a , b ] . Be careful to understand how this is different from the Fundamental Theorem.
  3. Use the Fundamental Theorem to prove that for x 1 we have
    ln ( x ) = F ( x ) 1 x 1 t d t ,
    and for 0 < x < 1 we have
    ln ( x ) = F ( x ) - x 1 1 t d t .
    HINT: Show that these two functions have the same derivative and agree at x = 1 .

Questions & Answers

prostaglandin and fever
Maha Reply
Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Analysis of functions of a single variable. OpenStax CNX. Dec 11, 2010 Download for free at http://cnx.org/content/col11249/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Analysis of functions of a single variable' conversation and receive update notifications?

Ask