<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Understand the synthesis of macromolecules
  • Explain dehydration (or condensation) and hydrolysis reactions

As you’ve learned, biological macromolecules are large molecules, necessary for life, that are built from smaller organic molecules. There are four major classes of biological macromolecules (carbohydrates, lipids, proteins, and nucleic acids); each is an important cell component and performs a wide array of functions. Combined, these molecules make up the majority of a cell’s dry mass (recall that water makes up the majority of its complete mass). Biological macromolecules are organic, meaning they contain carbon. In addition, they may contain hydrogen, oxygen, nitrogen, and additional minor elements.

Dehydration synthesis

Most macromolecules are made from single subunits, or building blocks, called monomers . The monomers combine with each other using covalent bonds to form larger molecules known as polymers . In doing so, monomers release water molecules as byproducts. This type of reaction is known as dehydration synthesis    , which means “to put together while losing water.”

Shown is the reaction of two glucose monomers to form maltose. When maltose is formed, a water molecules is released.
In the dehydration synthesis reaction depicted above, two molecules of glucose are linked together to form the disaccharide maltose. In the process, a water molecule is formed.

In a dehydration synthesis reaction ( [link] ), the hydrogen of one monomer combines with the hydroxyl group of another monomer, releasing a molecule of water. At the same time, the monomers share electrons and form covalent bonds. As additional monomers join, this chain of repeating monomers forms a polymer. Different types of monomers can combine in many configurations, giving rise to a diverse group of macromolecules. Even one kind of monomer can combine in a variety of ways to form several different polymers: for example, glucose monomers are the constituents of starch, glycogen, and cellulose.


Polymers are broken down into monomers in a process known as hydrolysis, which means “to split water,” a reaction in which a water molecule is used during the breakdown ( [link] ). During these reactions, the polymer is broken into two components: one part gains a hydrogen atom (H+) and the other gains a hydroxyl molecule (OH–) from a split water molecule.

Shown is the breakdown of maltose to form two glucose monomers. Water is a reactant.
In the hydrolysis reaction shown here, the disaccharide maltose is broken down to form two glucose monomers with the addition of a water molecule. Note that this reaction is the reverse of the synthesis reaction shown in [link] .

Dehydration and hydrolysis reactions are catalyzed, or “sped up,” by specific enzymes; dehydration reactions involve the formation of new bonds, requiring energy, while hydrolysis reactions break bonds and release energy. These reactions are similar for most macromolecules, but each monomer and polymer reaction is specific for its class. For example, in our bodies, food is hydrolyzed, or broken down, into smaller molecules by catalytic enzymes in the digestive system. This allows for easy absorption of nutrients by cells in the intestine. Each macromolecule is broken down by a specific enzyme. For instance, carbohydrates are broken down by amylase, sucrase, lactase, or maltase. Proteins are broken down by the enzymes pepsin and peptidase, and by hydrochloric acid. Lipids are broken down by lipases. Breakdown of these macromolecules provides energy for cellular activities.

Visit this site to see visual representations of dehydration synthesis and hydrolysis.

Section summary

Proteins, carbohydrates, nucleic acids, and lipids are the four major classes of biological macromolecules—large molecules necessary for life that are built from smaller organic molecules. Macromolecules are made up of single units known as monomers that are joined by covalent bonds to form larger polymers. The polymer is more than the sum of its parts: it acquires new characteristics, and leads to an osmotic pressure that is much lower than that formed by its ingredients; this is an important advantage in the maintenance of cellular osmotic conditions. A monomer joins with another monomer with the release of a water molecule, leading to the formation of a covalent bond. These types of reactions are known as dehydration or condensation reactions. When polymers are broken down into smaller units (monomers), a molecule of water is used for each bond broken by these reactions; such reactions are known as hydrolysis reactions. Dehydration and hydrolysis reactions are similar for all macromolecules, but each monomer and polymer reaction is specific to its class. Dehydration reactions typically require an investment of energy for new bond formation, while hydrolysis reactions typically release energy by breaking bonds.

Questions & Answers

What is Staining?
Fazal Reply
what is biology
Biology is the study of life
what is biology
Ysabella Reply
biology is a study of living things
Biology is a diverse branch of science that deals with mostly living things
What happen when inhibit the transcription?
what is the effect of not doing sexual intercourse
what is the mechanism of cellular respiration
Rita Reply
what is enzyme
garry Reply
They are organic catalysts that alter the rate of chemical reactions in the body.
meaning they speed up reaction
Enzymes are forms of chemicals that are specialized in their own areas.(eg digestion of food)
Enzymes are organic catalysts
what is a cell
Praize Reply
Basic Functional Unit of Life
what is biology
Mordi Reply
biology is the study of living organisms and their interactions with one another and their environments
which of the following event does not occur during some stages of interface?
Bangha Reply
What is microfilaments
KHalid Reply
What is multicellular organisms
Ovie Reply
these are organisms with more than two cells
the process when a male toad fertilizer a female eggs is called what?
Ahrebe Reply
how did unicellular organisms form plants and animals or is it that different unicellular organisms formed plants and animald
YXNG Reply
name the components of faeces
undigested carbohydrate, fibre
what are unicellular organisms..?
they have only one cell
faeces contains many undigested food materials, after the food has been digested then it will be absorbed in the blood stream for assimilation.,......... but the remains toxic materials are stored in the rectum these toxic materials are the faeces and it contains bile salts, the polysaccharides .
unicellular organisms are the ones with only single cell.
thanks for your answers guys.
what is class bryophyta
Emefa Reply
how many stages do we have in glycolysis?
10 stages
the presence of a membrane enclosed nuclosed is a characteristics of what
Addai Reply
eukaryotic cell

Get the best Biology course in your pocket!

Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?