<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Discuss the role of transcription factors in gene regulation
  • Explain how enhancers and repressors regulate gene expression

Like prokaryotic cells, the transcription of genes in eukaryotes requires the actions of an RNA polymerase to bind to a sequence upstream of a gene to initiate transcription. However, unlike prokaryotic cells, the eukaryotic RNA polymerase requires other proteins, or transcription factors, to facilitate transcription initiation. Transcription factors are proteins that bind to the promoter sequence and other regulatory sequences to control the transcription of the target gene. RNA polymerase by itself cannot initiate transcription in eukaryotic cells. Transcription factors must bind to the promoter region first and recruit RNA polymerase to the site for transcription to be established.

View the process of transcription—the making of RNA from a DNA template—at this site .

The promoter and the transcription machinery

Genes are organized to make the control of gene expression easier. The promoter region is immediately upstream of the coding sequence. This region can be short (only a few nucleotides in length) or quite long (hundreds of nucleotides long). The longer the promoter, the more available space for proteins to bind. This also adds more control to the transcription process. The length of the promoter is gene-specific and can differ dramatically between genes. Consequently, the level of control of gene expression can also differ quite dramatically between genes. The purpose of the promoter is to bind transcription factors that control the initiation of transcription.

Within the promoter region, just upstream of the transcriptional start site, resides the TATA box. This box is simply a repeat of thymine and adenine dinucleotides (literally, TATA repeats). RNA polymerase binds to the transcription initiation complex, allowing transcription to occur. To initiate transcription, a transcription factor (TFIID) is the first to bind to the TATA box. Binding of TFIID recruits other transcription factors, including TFIIB, TFIIE, TFIIF, and TFIIH to the TATA box. Once this complex is assembled, RNA polymerase can bind to its upstream sequence. When bound along with the transcription factors, RNA polymerase is phosphorylated. This releases part of the protein from the DNA to activate the transcription initiation complex and places RNA polymerase in the correct orientation to begin transcription; DNA-bending protein brings the enhancer, which can be quite a distance from the gene, in contact with transcription factors and mediator proteins ( [link] ).

Eukaryotic gene expression is controlled by a promoter immediately adjacent to the gene, and an enhancer far upstream. The DNA folds over itself, bringing the enhancer next to the promoter. Transcription factors and mediator proteins are sandwiched between the promoter and the enhancer. Short DNA sequences within the enhancer called distal control elements bind activators, which in turn bind transcription factors and mediator proteins bound to the promoter. RNA polymerase binds the complex, allowing transcription to begin. Different genes have enhancers with different distal control elements, allowing differential regulation of transcription.
An enhancer is a DNA sequence that promotes transcription. Each enhancer is made up of short DNA sequences called distal control elements. Activators bound to the distal control elements interact with mediator proteins and transcription factors. Two different genes may have the same promoter but different distal control elements, enabling differential gene expression.

In addition to the general transcription factors, other transcription factors can bind to the promoter to regulate gene transcription. These transcription factors bind to the promoters of a specific set of genes. They are not general transcription factors that bind to every promoter complex, but are recruited to a specific sequence on the promoter of a specific gene. There are hundreds of transcription factors in a cell that each bind specifically to a particular DNA sequence motif. When transcription factors bind to the promoter just upstream of the encoded gene, it is referred to as a cis -acting element    , because it is on the same chromosome just next to the gene. The region that a particular transcription factor binds to is called the transcription factor binding site    . Transcription factors respond to environmental stimuli that cause the proteins to find their binding sites and initiate transcription of the gene that is needed.

Enhancers and transcription

In some eukaryotic genes, there are regions that help increase or enhance transcription. These regions, called enhancers , are not necessarily close to the genes they enhance. They can be located upstream of a gene, within the coding region of the gene, downstream of a gene, or may be thousands of nucleotides away.

Enhancer regions are binding sequences, or sites, for transcription factors. When a DNA-bending protein binds, the shape of the DNA changes ( [link] ). This shape change allows for the interaction of the activators bound to the enhancers with the transcription factors bound to the promoter region and the RNA polymerase. Whereas DNA is generally depicted as a straight line in two dimensions, it is actually a three-dimensional object. Therefore, a nucleotide sequence thousands of nucleotides away can fold over and interact with a specific promoter.

Turning genes off: transcriptional repressors

Like prokaryotic cells, eukaryotic cells also have mechanisms to prevent transcription. Transcriptional repressors can bind to promoter or enhancer regions and block transcription. Like the transcriptional activators, repressors respond to external stimuli to prevent the binding of activating transcription factors.

Section summary

To start transcription, general transcription factors, such as TFIID, TFIIH, and others, must first bind to the TATA box and recruit RNA polymerase to that location. The binding of additional regulatory transcription factors to cis -acting elements will either increase or prevent transcription. In addition to promoter sequences, enhancer regions help augment transcription. Enhancers can be upstream, downstream, within a gene itself, or on other chromosomes. Transcription factors bind to enhancer regions to increase or prevent transcription.

Questions & Answers

what is oxidation?
Rose Reply
 the state or result of being oxidized
Emmanuel
hahahaha thanks, but my teachers requires a thorough meaning about that
Rose
Is the process of oxidizing ,the addition of oxygen to a compound with a loss of electrons, always accompanied by reduction
Korletey
loss of electron....
Anwar
thank you. 😊
Rose
thank you. 😊
Rose
thank you. 😊
Rose
what is genetic
Chibawa Reply
name the enzymes that i found in the saliva
Valuables Reply
draw a bacterium cell and label
Kadijah Reply
What are the osmoregulatory functions of the kidney?
bisi Reply
filter
Meenu
What is ecology
Hebert Reply
what is cell
Etama Reply
cell is the basic unit of life
Asiatou
cell is the basic structural and functional unit of an living organism
Darshan
a cell is the smallest and most basic unit of a living thing
John
cell is the basic unit of life. we are made up of 60,000 billions of cells.Each cell carry out a specific function in the body.
Pallavi
A cell is the smallest basic functioning unit of life.
Ali
where is the pectoral gridle located?
Tiania Reply
What is hypotonic
Bright Reply
what is hypotonic
Dangaya
Hypotonic means weak solution
Ali
the difference between the two cells
Obeng Reply
explain the courses and the correction of lon term sightedness and short term sightedness
Isaac Reply
long sightedness is said to be like someone that can see far object clearly why short sightedness is someone that only can see near obect
SHEDRACK
why drinking excess alcohol causes thirst and dehydration
uwikuzo Reply
Can we chat about nutrition please?
Elia
yes
Uzair
sure
Uzair
Uhm why is it so important to follow the nutritional process?
Elia
BC it contribute to the source of life
SHEDRACK
what is reproduction
smart Reply
it is d act of bringing young ones to life
Oyebanji
to ensure survival of a species🚴‍♀️
Michelle
what is a genotype
Collins
what is hazardous
smart
a cell is the smallest unit of a living thing. so we all have cell
smart
It is the formation of a zygote resulting from the fusion of the sperm cell with the ovum.Thus,this results in the production of new species which are genetically dissimilar from their parent cells.
Pallavi
yes we all have cell round our body without the existances of cell them they will be no life in us as human
SHEDRACK
what is size of cell
Mohd Reply
what is size of Hart
Mohd
nanometers=um sign thingie
Michelle
microns=nanometers
Michelle
monomers and polymers of nucleic acids?
Jyrl Reply
dna and rna involvement
Michelle

Get the best Biology course in your pocket!





Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?

Ask