<< Chapter < Page Chapter >> Page >

Partner resources

OpenStax Partners are our allies in the mission to make high-quality learning materials affordable and accessible to students and instructors everywhere. Their tools integrate seamlessly with our OpenStax titles at a low cost. To access the partner resources for your text, visit your book page on openstax.org.

About the authors

Senior contributing authors

Andrew Fraknoi, Foothill College
Andrew Fraknoi is Chair of the Astronomy Department at Foothill College and served as the Executive Director of the Astronomical Society of the Pacific from 1978–1992. His work with the society included editing Mercury Magazine, Universe in the Classroom , and Astronomy Beat . He’s taught at San Francisco State University, Canada College, and the University of California Extension. He is editor/co-author of The Universe at Your Fingertips 2.0, a collection of teaching activities, and co-author of Solar Science, a book for middle-school teachers. He was co-author of a syndicated newspaper column on astronomy, and appears regularly on local and national radio. With Sidney Wolff, he was founder of Astronomy Education Review . He serves on the Board of Trustees of the SETI Institute and on the Lick Observatory Council. In addition, he has organized six national symposia on teaching introductory astronomy. He received the Klumpke-Roberts Prize of the ASP, the Gemant Award of the American Institute of Physics, and the Faraday Award of the NSTA.

David Morrison, National Aeronautics and Space Administration
David Morrison is a Senior Scientist at NASA Ames Research Center. He received his PhD in astronomy from Harvard, where he was one of Carl Sagan’s graduate students. He is a founder of the field of astrobiology and is known for research on small bodies in the solar system. He spent 17 years at University of Hawaii’s Institute for Astronomy and the Department of Physics and Astronomy. He was Director of the IRTF at Mauna Kea Observatory. Morrison has held senior NASA positions including Chief of the Ames Space Science Division and founding Director of the Lunar Science Institute. He’s been on science teams for the Voyager, Galileo, and Kepler missions. Morrison received NASA Outstanding Leadership Medals and the NASA Exceptional Achievement Medal. He was awarded the AAS Carl Sagan medal and the ASP Klumpke-Roberts prize. Committed to the struggle against pseudoscience, he serves as Contributing Editor of Skeptical Inquirer and on the Advisory Council of the National Center for Science Education.

Sidney C. Wolff, National Optical Astronomy Observatories (Emeritus)
After receiving her PhD from the UC Berkeley, Dr. Wolff was involved with the astronomical development of Mauna Kea. In 1984, she became the Director of Kitt Peak National Observatory, and was director of National Optical Astronomy Observatory. Most recently, she led the design and development of the 8.4-meter Large Synoptic Survey Telescope. Dr. Wolff has published over ninety refereed papers on star formation and stellar atmospheres. She has served as President of the AAS and the ASP. Her recently published book, The Boundless Universe: Astronomy in the New Age of Discovery , won the 2016 IPPY (Independent Publisher Book Awards) Silver Medal in Science.

All three senior contributing authors have received the Education Prize of the American Astronomical Society and have had an asteroid named after them by the International Astronomical Union. They have worked together on a series of astronomy textbooks over the past two decades.

Contributing authors

John Beck, Stanford University
Susan D. Benecchi, Planetary Science Institute
John Bochanski, Rider University
Howard Bond, Pennsylvania State University, Emeritus, Space Telescope Science Institute
Jennifer Carson, Occidental College
Bryan Dunne, University of Illinois at Urbana-Champaign
Martin Elvis, Harvard-Smithsonian Center for Astrophysics
Debra Fischer, Yale University
Heidi Hammel, Association of Universities for Research in Astronomy
Tori Hoehler, NASA Ames Research Center
Douglas Ingram, Texas Christian University
Steven Kawaler, Iowa State University
Lloyd Knox, University of California, Davis
Mark Krumholz, Australian National University
James Lowenthal, Smith College
Siobahn Morgan, University of Northern Iowa
Daniel Perley, California Institute of Technology
Claire Raftery, National Solar Observatory
Deborah Scherrer, retired, Stanford University
Phillip Scherrer, Stanford University
Sanjoy Som, Blue Marble Space Institute of Science, NASA Ames Research Center
Wes Tobin, Indiana University East
William H. Waller, retired, Tufts University, Rockport (MA) Public Schools
Todd Young, Wayne State College

Reviewers

Elisabeth R. Adams, Planetary Science Institute
Alfred N. Alaniz, San Antonio College
Charles Allison, Texas A&M University–Kingsville
Douglas Arion, Carthage College
Timothy Barker, Wheaton College
Marshall Bartlett, The Hockaday School
Charles Benesh, Wesleyan College
Gerald B. Cleaver, Baylor University
Kristi Concannon, King’s College
Anthony Crider, Elon University
Scott Engle, Villanova University
Matthew Fillingim, University of California, Berkeley
Robert Fisher, University of Massachusetts, Dartmouth
Carrie Fitzgerald, Montgomery College
Christopher Fuse, Rollins College
Shila Garg, Emeritus, The College of Wooster
Richard Gelderman, Western Kentucky University
Lee Hartman, University of Michigan
Beth Hufnagel, Anne Arundel Community College
Francine Jackson, Brown University
Joseph Jensen, Utah Valley University
John Kielkopf, University of Louisville
James C. Lombardi, Jr., Allegheny College
Amy Lovell, Agnes Scott College
Charles Niederriter, Gustavus Adolphus College
Richard Olenick, University of Dallas
Matthew Olmstead, King’s College
Zoran Pazameta, Eastern Connecticut State University
David Quesada, Saint Thomas University
Valerie A. Rapson, Dudley Observatory
Joseph Ribaudo, Utica College
Dean Richardson, Xavier University of Louisiana
Andrew Rivers, Northwestern University
Marc Sher, College of William&Mary
Christopher Sirola, University of Southern Mississippi
Ran Sivron, Baker University
J. Allyn Smith, Austin Peay State University
Jason Smolinski, Calvin College
Michele Thornley, Bucknell University
Richard Webb, Union College
Terry Willis, Chesapeake College
David Wood, San Antonio College
Jeremy Wood, Hazard Community and Technical College
Jared Workman, Colorado Mesa University
Kaisa E. Young, Nicholls State University

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Astronomy. OpenStax CNX. Apr 12, 2017 Download for free at http://cnx.org/content/col11992/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Astronomy' conversation and receive update notifications?

Ask