<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Determine whether a relation represents a function.
  • Find the value of a function.
  • Determine whether a function is one-to-one.
  • Use the vertical line test to identify functions.
  • Graph the functions listed in the library of functions.

A jetliner changes altitude as its distance from the starting point of a flight increases. The weight of a growing child increases with time. In each case, one quantity depends on another. There is a relationship between the two quantities that we can describe, analyze, and use to make predictions. In this section, we will analyze such relationships.

Determining whether a relation represents a function

A relation    is a set of ordered pairs. The set of the first components of each ordered pair is called the domain and the set of the second components of each ordered pair is called the range . Consider the following set of ordered pairs. The first numbers in each pair are the first five natural numbers. The second number in each pair is twice that of the first.

{ ( 1 , 2 ) , ( 2 , 4 ) , ( 3 , 6 ) , ( 4 , 8 ) , ( 5 , 10 ) }

The domain is { 1 , 2 , 3 , 4 , 5 } . The range is { 2 , 4 , 6 , 8 , 10 } .

Note that each value in the domain is also known as an input value, or independent variable    , and is often labeled with the lowercase letter x . Each value in the range is also known as an output value, or dependent variable    , and is often labeled lowercase letter y .

A function f is a relation that assigns a single value in the range to each value in the domain . In other words, no x -values are repeated. For our example that relates the first five natural numbers to numbers double their values, this relation is a function because each element in the domain, { 1 , 2 , 3 , 4 , 5 } , is paired with exactly one element in the range, { 2 , 4 , 6 , 8 , 10 } .

Now let’s consider the set of ordered pairs that relates the terms “even” and “odd” to the first five natural numbers. It would appear as

{ ( odd , 1 ) , ( even , 2 ) , ( odd , 3 ) , ( even , 4 ) , ( odd , 5 ) }

Notice that each element in the domain, { even, odd } is not paired with exactly one element in the range, { 1 , 2 , 3 , 4 , 5 } . For example, the term “odd” corresponds to three values from the domain, { 1 , 3 , 5 } and the term “even” corresponds to two values from the range, { 2 , 4 } . This violates the definition of a function, so this relation is not a function.

[link] compares relations that are functions and not functions.

Three relations that demonstrate what constitute a function.
(a) This relationship is a function because each input is associated with a single output. Note that input q and r both give output n . (b) This relationship is also a function. In this case, each input is associated with a single output. (c) This relationship is not a function because input q is associated with two different outputs.

Function

A function    is a relation in which each possible input value leads to exactly one output value. We say “the output is a function of the input.”

The input    values make up the domain    , and the output    values make up the range    .

Given a relationship between two quantities, determine whether the relationship is a function.

  1. Identify the input values.
  2. Identify the output values.
  3. If each input value leads to only one output value, classify the relationship as a function. If any input value leads to two or more outputs, do not classify the relationship as a function.

Questions & Answers

anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Essential precalculus, part 1. OpenStax CNX. Aug 26, 2015 Download for free at http://legacy.cnx.org/content/col11871/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Essential precalculus, part 1' conversation and receive update notifications?

Ask