<< Chapter < Page Chapter >> Page >

Vertical asymptotes

The vertical asymptotes of a rational function may be found by examining the factors of the denominator that are not common to the factors in the numerator. Vertical asymptotes occur at the zeros of such factors.

Given a rational function, identify any vertical asymptotes of its graph.

  1. Factor the numerator and denominator.
  2. Note any restrictions in the domain of the function.
  3. Reduce the expression by canceling common factors in the numerator and the denominator.
  4. Note any values that cause the denominator to be zero in this simplified version. These are where the vertical asymptotes occur.
  5. Note any restrictions in the domain where asymptotes do not occur. These are removable discontinuities, or “holes.”

Identifying vertical asymptotes

Find the vertical asymptotes of the graph of k ( x ) = 5 + 2 x 2 2 x x 2 .

First, factor the numerator and denominator.

k ( x ) = 5 + 2 x 2 2 x x 2 = 5 + 2 x 2 ( 2 + x ) ( 1 x )

To find the vertical asymptotes, we determine where this function will be undefined by setting the denominator equal to zero:

( 2 + x ) ( 1 x ) = 0 x = −2 , 1

Neither x = –2 nor x = 1 are zeros of the numerator, so the two values indicate two vertical asymptotes. The graph in [link] confirms the location of the two vertical asymptotes.

Graph of k(x)=(5+2x)^2/(2-x-x^2) with its vertical asymptotes at x=-2 and x=1 and its horizontal asymptote at y=-2.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Removable discontinuities

Occasionally, a graph will contain a hole: a single point where the graph is not defined, indicated by an open circle. We call such a hole a removable discontinuity    .

For example, the function f ( x ) = x 2 1 x 2 2 x 3 may be re-written by factoring the numerator and the denominator.

f ( x ) = ( x + 1 ) ( x 1 ) ( x + 1 ) ( x 3 )

Notice that x + 1 is a common factor to the numerator and the denominator. The zero of this factor, x = −1 , is the location of the removable discontinuity. Notice also that x 3 is not a factor in both the numerator and denominator. The zero of this factor, x = 3 , is the vertical asymptote. See [link] . [Note that removable discontinuities may not be visible when we use a graphing calculator, depending upon the window selected.]

Graph of f(x)=(x^2-1)/(x^2-2x-3) with its vertical asymptote at x=3 and a removable discontinuity at x=-1.

Removable discontinuities of rational functions

A removable discontinuity    occurs in the graph of a rational function at x = a if a is a zero for a factor in the denominator that is common with a factor in the numerator. We factor the numerator and denominator and check for common factors. If we find any, we set the common factor equal to 0 and solve. This is the location of the removable discontinuity. This is true if the multiplicity of this factor is greater than or equal to that in the denominator. If the multiplicity of this factor is greater in the denominator, then there is still an asymptote at that value.

Identifying vertical asymptotes and removable discontinuities for a graph

Find the vertical asymptotes and removable discontinuities of the graph of k ( x ) = x 2 x 2 4 .

Factor the numerator and the denominator.

k ( x ) = x 2 ( x 2 ) ( x + 2 )

Notice that there is a common factor in the numerator and the denominator, x 2. The zero for this factor is x = 2. This is the location of the removable discontinuity.

Notice that there is a factor in the denominator that is not in the numerator, x + 2. The zero for this factor is x = −2. The vertical asymptote is x = −2. See [link] .

Graph of k(x)=(x-2)/(x-2)(x+2) with its vertical asymptote at x=-2 and a removable discontinuity at x=2.

The graph of this function will have the vertical asymptote at x = −2 , but at x = 2 the graph will have a hole.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

The sequence is {1,-1,1-1.....} has
amit Reply
circular region of radious
Kainat Reply
how can we solve this problem
Joel Reply
Sin(A+B) = sinBcosA+cosBsinA
Eseka Reply
Prove it
Eseka
Please prove it
Eseka
hi
Joel
June needs 45 gallons of punch. 2 different coolers. Bigger cooler is 5 times as large as smaller cooler. How many gallons in each cooler?
Arleathia Reply
7.5 and 37.5
Nando
find the sum of 28th term of the AP 3+10+17+---------
Prince Reply
I think you should say "28 terms" instead of "28th term"
Vedant
the 28th term is 175
Nando
192
Kenneth
if sequence sn is a such that sn>0 for all n and lim sn=0than prove that lim (s1 s2............ sn) ke hole power n =n
SANDESH Reply
write down the polynomial function with root 1/3,2,-3 with solution
Gift Reply
if A and B are subspaces of V prove that (A+B)/B=A/(A-B)
Pream Reply
write down the value of each of the following in surd form a)cos(-65°) b)sin(-180°)c)tan(225°)d)tan(135°)
Oroke Reply
Prove that (sinA/1-cosA - 1-cosA/sinA) (cosA/1-sinA - 1-sinA/cosA) = 4
kiruba Reply
what is the answer to dividing negative index
Morosi Reply
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
Shivam Reply
give me the waec 2019 questions
Aaron Reply
the polar co-ordinate of the point (-1, -1)
Sumit Reply
Practice Key Terms 5

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask