<< Chapter < Page Chapter >> Page >

Finding zeros and maximum values for a polar equation

Using the equation in [link] , find the zeros and maximum | r | and, if necessary, the polar axis intercepts of r = 2 sin θ .

To find the zeros, set r equal to zero and solve for θ .

2 sin θ = 0 sin θ = 0 θ = sin 1 0 θ = n π where  n  is an integer

Substitute any one of the θ values into the equation. We will use 0.

r = 2 sin ( 0 ) r = 0

The points ( 0 , 0 ) and ( 0 , ± n π ) are the zeros of the equation. They all coincide, so only one point is visible on the graph. This point is also the only polar axis intercept.

To find the maximum value of the equation, look at the maximum value of the trigonometric function sin θ , which occurs when θ = π 2 ± 2 k π resulting in sin ( π 2 ) = 1. Substitute π 2 for θ.

r = 2 sin ( π 2 ) r = 2 ( 1 ) r = 2
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Without converting to Cartesian coordinates, test the given equation for symmetry and find the zeros and maximum values of | r | : r = 3 cos θ .

Tests will reveal symmetry about the polar axis. The zero is ( 0 , π 2 ) , and the maximum value is ( 3 , 0 ) .

Got questions? Get instant answers now!

Investigating circles

Now we have seen the equation of a circle in the polar coordinate system. In the last two examples, the same equation was used to illustrate the properties of symmetry and demonstrate how to find the zeros, maximum values, and plotted points that produced the graphs. However, the circle is only one of many shapes in the set of polar curves.

There are five classic polar curves : cardioids , limaҫons, lemniscates, rose curves , and Archimedes’ spirals . We will briefly touch on the polar formulas for the circle before moving on to the classic curves and their variations.

Formulas for the equation of a circle

Some of the formulas that produce the graph of a circle in polar coordinates are given by r = a cos θ and r = a sin θ , where a is the diameter of the circle or the distance from the pole to the farthest point on the circumference. The radius is | a | 2 , or one-half the diameter. For r = a cos θ ,  the center is ( a 2 , 0 ) . For r = a sin θ , the center is ( a 2 , π ) . [link] shows the graphs of these four circles.

Four graphs side by side. All have radius absolute value of a / 2. First is r=acos(theta), a>0. The center is at (a/2,0). Second is r=acos(theta), a<0. The center is at (a/2,0).  Third is r=asin(theta), a>0. The center is at (a/2, pi). Fourth is r=asin(theta), a<0. The center is at (a/2, pi).

Sketching the graph of a polar equation for a circle

Sketch the graph of r = 4 cos θ .

First, testing the equation for symmetry, we find that the graph is symmetric about the polar axis. Next, we find the zeros    and maximum | r | for r = 4 cos θ . First, set r = 0 , and solve for θ . Thus, a zero occurs at θ = π 2 ± k π . A key point to plot is ( 0 , π 2 ) .

To find the maximum value of r , note that the maximum value of the cosine function is 1 when θ = 0 ± 2 k π . Substitute θ = 0 into the equation:

r = 4 cos θ r = 4 cos ( 0 ) r = 4 ( 1 ) = 4

The maximum value of the equation is 4. A key point to plot is ( 4 , 0 ) .

As r = 4 cos θ is symmetric with respect to the polar axis, we only need to calculate r -values for θ over the interval [ 0 , π ] . Points in the upper quadrant can then be reflected to the lower quadrant. Make a table of values similar to [link] . The graph is shown in [link] .

θ 0 π 6 π 4 π 3 π 2 2 π 3 3 π 4 5 π 6 π
r 4 3.46 2.83 2 0 −2 −2.83 −3.46 4
Graph of 4=4cos(theta) in polar coordinates. Points (0, pi/2), (-2, 2pi/3), (4,0), and (2, pi/3) are marked on the circumference.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Investigating cardioids

While translating from polar coordinates to Cartesian coordinates may seem simpler in some instances, graphing the classic curves is actually less complicated in the polar system. The next curve is called a cardioid, as it resembles a heart. This shape is often included with the family of curves called limaçons, but here we will discuss the cardioid on its own.

Questions & Answers

Why is b in the answer
Dahsolar Reply
how do you work it out?
Brad Reply
answer
Ernest
heheheehe
Nitin
(Pcos∅+qsin∅)/(pcos∅-psin∅)
John Reply
how to do that?
Rosemary Reply
what is it about?
Amoah
how to answer the activity
Chabelita Reply
how to solve the activity
Chabelita
solve for X,,4^X-6(2^)-16=0
Alieu Reply
x4xminus 2
Lominate
sobhan Singh jina uniwarcity tignomatry ka long answers tile questions
harish Reply
t he silly nut company makes two mixtures of nuts: mixture a and mixture b. a pound of mixture a contains 12 oz of peanuts, 3 oz of almonds and 1 oz of cashews and sells for $4. a pound of mixture b contains 12 oz of peanuts, 2 oz of almonds and 2 oz of cashews and sells for $5. the company has 1080
ZAHRO Reply
If  , , are the roots of the equation 3 2 0, x px qx r     Find the value of 1  .
Swetha Reply
Parts of a pole were painted red, blue and yellow. 3/5 of the pole was red and 7/8 was painted blue. What part was painted yellow?
Patrick Reply
Parts of the pole was painted red, blue and yellow. 3 /5 of the pole was red and 7 /8 was painted blue. What part was painted yellow?
Patrick
how I can simplify algebraic expressions
Katleho Reply
Lairene and Mae are joking that their combined ages equal Sam’s age. If Lairene is twice Mae’s age and Sam is 69 yrs old, what are Lairene’s and Mae’s ages?
Mary Reply
23yrs
Yeboah
lairenea's age is 23yrs
ACKA
hy
Katleho
Ello everyone
Katleho
Laurene is 46 yrs and Mae is 23 is
Solomon
hey people
christopher
age does not matter
christopher
solve for X, 4^x-6(2*)-16=0
Alieu
prove`x^3-3x-2cosA=0 (-π<A<=π
Mayank Reply
create a lesson plan about this lesson
Rose Reply
Excusme but what are you wrot?
Practice Key Terms 9

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask