<< Chapter < Page Chapter >> Page >

Sketch the graph of r = 3 2 cos θ .

Graph of the limaçon r=3-2cos(theta). Extending to the left.
Got questions? Get instant answers now!

Another type of limaçon, the inner-loop limaçon , is named for the loop formed inside the general limaçon shape. It was discovered by the German artist Albrecht Dürer (1471-1528), who revealed a method for drawing the inner-loop limaçon in his 1525 book Underweysung der Messing . A century later, the father of mathematician Blaise Pascal , Étienne Pascal(1588-1651), rediscovered it.

Formulas for inner-loop limaçons

The formulas that generate the inner-loop limaçons are given by r = a ± b cos θ and r = a ± b sin θ where a > 0 , b > 0 , and a < b . The graph of the inner-loop limaçon passes through the pole twice: once for the outer loop, and once for the inner loop. See [link] for the graphs.

Graph of four inner loop limaçons side by side. (A) is r=a+bcos(theta),a<b. Extended to the right. (B) is a-bcos(theta), a<b. Extends to the left. (C) is r=a+bsin(theta), a<b. Extends up. (D) is r=a-bsin(theta), a<b. Extends down.

Sketching the graph of an inner-loop limaçon

Sketch the graph of r = 2 + 5 cos θ .

Testing for symmetry, we find that the graph of the equation is symmetric about the polar axis. Next, finding the zeros reveals that when r = 0 , θ = 1.98. The maximum | r | is found when cos θ = 1 or when θ = 0. Thus, the maximum is found at the point (7, 0).

Even though we have found symmetry, the zero, and the maximum, plotting more points will help to define the shape, and then a pattern will emerge.

See [link] .

θ 0 π 6 π 3 π 2 2 π 3 5 π 6 π 7 π 6 4 π 3 3 π 2 5 π 3 11 π 6 2 π
r 7 6.3 4.5 2 −0.5 −2.3 −3 −2.3 −0.5 2 4.5 6.3 7

As expected, the values begin to repeat after θ = π . The graph is shown in [link] .

Graph of inner loop limaçon r=2+5cos(theta). Extends to the right. Points on edge plotted are (7,0), (4.5, pi/3), (2, pi/2), and (-3, pi).
Inner-loop limaçon
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Investigating lemniscates

The lemniscate is a polar curve resembling the infinity symbol or a figure 8. Centered at the pole, a lemniscate is symmetrical by definition.

Formulas for lemniscates

The formulas that generate the graph of a lemniscate    are given by r 2 = a 2 cos 2 θ and r 2 = a 2 sin 2 θ where a 0. The formula r 2 = a 2 sin 2 θ is symmetric with respect to the pole. The formula r 2 = a 2 cos 2 θ is symmetric with respect to the pole, the line θ = π 2 , and the polar axis. See [link] for the graphs.

Four graphs of lemniscates side by side. (A) is r^2 = a^2 * cos(2theta). Horizonatal figure eight, on x-axis. (B) is r^2 = - a^2 * cos(2theta). Vertical figure eight, on y axis. (C) is r^2 = a^2 * sin(2theta). Diagonal figure eight on line y=x. (D) is r^2 = -a^2 *sin(2theta). Diagonal figure eight on line y=-x.

Sketching the graph of a lemniscate

Sketch the graph of r 2 = 4 cos 2 θ .

The equation exhibits symmetry with respect to the line θ = π 2 , the polar axis, and the pole.

Let’s find the zeros. It should be routine by now, but we will approach this equation a little differently by making the substitution u = 2 θ .

0 = 4 cos 2 θ 0 = 4 cos u 0 = cos u cos 1 0 = π 2 u = π 2 Substitute  2 θ  back in for  u . 2 θ = π 2 θ = π 4

So, the point ( 0 , π 4 ) is a zero of the equation.

Now let’s find the maximum value. Since the maximum of cos u = 1 when u = 0 , the maximum cos 2 θ = 1 when 2 θ = 0. Thus,

r 2 = 4 cos ( 0 ) r 2 = 4 ( 1 ) = 4 r = ± 4 = 2

We have a maximum at (2, 0). Since this graph is symmetric with respect to the pole, the line θ = π 2 , and the polar axis, we only need to plot points in the first quadrant.

Make a table similar to [link] .

θ 0 π 6 π 4 π 3 π 2
r 2 2 0 2 0

Plot the points on the graph, such as the one shown in [link] .

Graph of r^2 = 4cos(2theta). Horizontal lemniscate, along x-axis. Points on edge plotted are (2,0), (rad2, pi/6), (rad2 7pi/6).
Lemniscate
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Investigating rose curves

The next type of polar equation produces a petal-like shape called a rose curve. Although the graphs look complex, a simple polar equation generates the pattern.

Rose curves

The formulas that generate the graph of a rose curve    are given by r = a cos n θ and r = a sin n θ where a 0. If n is even, the curve has 2 n petals. If n is odd, the curve has n petals. See [link] .

Graph of two rose curves side by side. (A) is r=acos(ntheta), where n is even. Eight petals extending from origin, equally spaced. (B) is r=asin(ntheta) where n is odd. Three petals extending from the origin, equally spaced.

Questions & Answers

How look for the general solution of a trig function
collins Reply
stock therom F=(x2+y2) i-2xy J jaha x=a y=o y=b
Saurabh Reply
root under 3-root under 2 by 5 y square
Himanshu Reply
The sum of the first n terms of a certain series is 2^n-1, Show that , this series is Geometric and Find the formula of the n^th
amani Reply
cosA\1+sinA=secA-tanA
Aasik Reply
why two x + seven is equal to nineteen.
Kingsley Reply
The numbers cannot be combined with the x
Othman
2x + 7 =19
humberto
2x +7=19. 2x=19 - 7 2x=12 x=6
Yvonne
because x is 6
SAIDI
what is the best practice that will address the issue on this topic? anyone who can help me. i'm working on my action research.
Melanie Reply
simplify each radical by removing as many factors as possible (a) √75
Jason Reply
how is infinity bidder from undefined?
Karl Reply
what is the value of x in 4x-2+3
Vishal Reply
give the complete question
Shanky
4x=3-2 4x=1 x=1+4 x=5 5x
Olaiya
hi can you give another equation I'd like to solve it
Daniel
what is the value of x in 4x-2+3
Olaiya
if 4x-2+3 = 0 then 4x = 2-3 4x = -1 x = -(1÷4) is the answer.
Jacob
4x-2+3 4x=-3+2 4×=-1 4×/4=-1/4
LUTHO
then x=-1/4
LUTHO
4x-2+3 4x=-3+2 4x=-1 4x÷4=-1÷4 x=-1÷4
LUTHO
A research student is working with a culture of bacteria that doubles in size every twenty minutes. The initial population count was  1350  bacteria. Rounding to five significant digits, write an exponential equation representing this situation. To the nearest whole number, what is the population size after  3  hours?
David Reply
v=lbh calculate the volume if i.l=5cm, b=2cm ,h=3cm
Haidar Reply
Need help with math
Peya
can you help me on this topic of Geometry if l help you
litshani
( cosec Q _ cot Q ) whole spuare = 1_cosQ / 1+cosQ
Aarav Reply
A guy wire for a suspension bridge runs from the ground diagonally to the top of the closest pylon to make a triangle. We can use the Pythagorean Theorem to find the length of guy wire needed. The square of the distance between the wire on the ground and the pylon on the ground is 90,000 feet. The square of the height of the pylon is 160,000 feet. So, the length of the guy wire can be found by evaluating √(90000+160000). What is the length of the guy wire?
Maxwell Reply
the indicated sum of a sequence is known as
Arku Reply
Practice Key Terms 9

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask