<< Chapter < Page Chapter >> Page >
In this section you will:
  • Plot ordered pairs in a Cartesian coordinate system.
  • Graph equations by plotting points.
  • Graph equations with a graphing utility.
  • Find x -intercepts and y -intercepts.
  • Use the distance formula.
  • Use the midpoint formula.
Road map of a city with street names on an x, y coordinate grid. Various points are marked in red on the grid lines indicating different locations on the map.

Tracie set out from Elmhurst, IL, to go to Franklin Park. On the way, she made a few stops to do errands. Each stop is indicated by a red dot in [link] . Laying a rectangular coordinate grid over the map, we can see that each stop aligns with an intersection of grid lines. In this section, we will learn how to use grid lines to describe locations and changes in locations.

Plotting ordered pairs in the cartesian coordinate system

An old story describes how seventeenth-century philosopher/mathematician René Descartes invented the system that has become the foundation of algebra while sick in bed. According to the story, Descartes was staring at a fly crawling on the ceiling when he realized that he could describe the fly’s location in relation to the perpendicular lines formed by the adjacent walls of his room. He viewed the perpendicular lines as horizontal and vertical axes. Further, by dividing each axis into equal unit lengths, Descartes saw that it was possible to locate any object in a two-dimensional plane using just two numbers—the displacement from the horizontal axis and the displacement from the vertical axis.

While there is evidence that ideas similar to Descartes’ grid system existed centuries earlier, it was Descartes who introduced the components that comprise the Cartesian coordinate system    , a grid system having perpendicular axes. Descartes named the horizontal axis the x- axis and the vertical axis the y- axis .

The Cartesian coordinate system, also called the rectangular coordinate system, is based on a two-dimensional plane consisting of the x -axis and the y -axis. Perpendicular to each other, the axes divide the plane into four sections. Each section is called a quadrant    ; the quadrants are numbered counterclockwise as shown in [link]

This is an image of an x, y plane with the axes labeled. The upper right section is labeled: Quadrant I.  The upper left section is labeled: Quadrant II.  The lower left section is labeled: Quadrant III.  The lower right section is labeled: Quadrant IV.

The center of the plane is the point at which the two axes cross. It is known as the origin    , or point ( 0 , 0 ) . From the origin, each axis is further divided into equal units: increasing, positive numbers to the right on the x- axis and up the y- axis; decreasing, negative numbers to the left on the x- axis and down the y- axis. The axes extend to positive and negative infinity as shown by the arrowheads in [link] .

This is an image of an x, y coordinate plane.  The x and y axis range from negative 5 to 5.

Each point in the plane is identified by its x- coordinate    , or horizontal displacement from the origin, and its y- coordinate    , or vertical displacement from the origin. Together, we write them as an ordered pair    indicating the combined distance from the origin in the form ( x , y ) . An ordered pair is also known as a coordinate pair because it consists of x- and y -coordinates. For example, we can represent the point ( 3 , −1 ) in the plane by moving three units to the right of the origin in the horizontal direction, and one unit down in the vertical direction. See [link] .

This is an image of an x, y coordinate plane. The x and y axis range from negative 5 to 5.  The point (3, -1) is labeled.  An arrow extends rightward from the origin 3 units and another arrow extends downward one unit from the end of that arrow to the point.

When dividing the axes into equally spaced increments, note that the x- axis may be considered separately from the y- axis. In other words, while the x- axis may be divided and labeled according to consecutive integers, the y- axis may be divided and labeled by increments of 2, or 10, or 100. In fact, the axes may represent other units, such as years against the balance in a savings account, or quantity against cost, and so on. Consider the rectangular coordinate system primarily as a method for showing the relationship between two quantities.

Questions & Answers

Why is b in the answer
Dahsolar Reply
how do you work it out?
Brad Reply
answer
Ernest
heheheehe
Nitin
(Pcos∅+qsin∅)/(pcos∅-psin∅)
John Reply
how to do that?
Rosemary Reply
what is it about?
Amoah
how to answer the activity
Chabelita Reply
how to solve the activity
Chabelita
solve for X,,4^X-6(2^)-16=0
Alieu Reply
x4xminus 2
Lominate
sobhan Singh jina uniwarcity tignomatry ka long answers tile questions
harish Reply
t he silly nut company makes two mixtures of nuts: mixture a and mixture b. a pound of mixture a contains 12 oz of peanuts, 3 oz of almonds and 1 oz of cashews and sells for $4. a pound of mixture b contains 12 oz of peanuts, 2 oz of almonds and 2 oz of cashews and sells for $5. the company has 1080
ZAHRO Reply
If  , , are the roots of the equation 3 2 0, x px qx r     Find the value of 1  .
Swetha Reply
Parts of a pole were painted red, blue and yellow. 3/5 of the pole was red and 7/8 was painted blue. What part was painted yellow?
Patrick Reply
Parts of the pole was painted red, blue and yellow. 3 /5 of the pole was red and 7 /8 was painted blue. What part was painted yellow?
Patrick
how I can simplify algebraic expressions
Katleho Reply
Lairene and Mae are joking that their combined ages equal Sam’s age. If Lairene is twice Mae’s age and Sam is 69 yrs old, what are Lairene’s and Mae’s ages?
Mary Reply
23yrs
Yeboah
lairenea's age is 23yrs
ACKA
hy
Katleho
Ello everyone
Katleho
Laurene is 46 yrs and Mae is 23 is
Solomon
hey people
christopher
age does not matter
christopher
solve for X, 4^x-6(2*)-16=0
Alieu
prove`x^3-3x-2cosA=0 (-π<A<=π
Mayank Reply
create a lesson plan about this lesson
Rose Reply
Excusme but what are you wrot?

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask