<< Chapter < Page Chapter >> Page >

Using the graphs of trigonometric functions to solve real-world problems

Many real-world scenarios represent periodic functions and may be modeled by trigonometric functions. As an example, let’s return to the scenario from the section opener. Have you ever observed the beam formed by the rotating light on a police car and wondered about the movement of the light beam itself across the wall? The periodic behavior of the distance the light shines as a function of time is obvious, but how do we determine the distance? We can use the tangent function .

Using trigonometric functions to solve real-world scenarios

Suppose the function y = 5 tan ( π 4 t ) marks the distance in the movement of a light beam from the top of a police car across a wall where t is the time in seconds and y is the distance in feet from a point on the wall directly across from the police car.

  1. Find and interpret the stretching factor and period.
  2. Graph on the interval [ 0 , 5 ] .
  3. Evaluate f ( 1 ) and discuss the function’s value at that input.
  1. We know from the general form of y = A tan ( B t ) that | A | is the stretching factor and π B is the period.
    A graph showing that variable A is the coefficient of the tangent function and variable B is the coefficient of x, which is within that tangent function.

    We see that the stretching factor is 5. This means that the beam of light will have moved 5 ft after half the period.

    The period is π π 4 = π 1 4 π = 4. This means that every 4 seconds, the beam of light sweeps the wall. The distance from the spot across from the police car grows larger as the police car approaches.

  2. To graph the function, we draw an asymptote at t = 2 and use the stretching factor and period. See [link]
    A graph of one period of a modified tangent function, with a vertical asymptote at x=4.
  3. period: f ( 1 ) = 5 tan ( π 4 ( 1 ) ) = 5 ( 1 ) = 5 ; after 1 second, the beam of has moved 5 ft from the spot across from the police car.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Access these online resources for additional instruction and practice with graphs of other trigonometric functions.

Key equations

Shifted, compressed, and/or stretched tangent function y = A tan ( B x C ) + D
Shifted, compressed, and/or stretched secant function y = A sec ( B x C ) + D
Shifted, compressed, and/or stretched cosecant function y = A csc ( B x C ) + D
Shifted, compressed, and/or stretched cotangent function y = A cot ( B x C ) + D

Key concepts

  • The tangent function has period π .
  • f ( x ) = A tan ( B x C ) + D is a tangent with vertical and/or horizontal stretch/compression and shift. See [link] , [link] , and [link] .
  • The secant and cosecant are both periodic functions with a period of 2 π . f ( x ) = A sec ( B x C ) + D gives a shifted, compressed, and/or stretched secant function graph. See [link] and [link] .
  • f ( x ) = A csc ( B x C ) + D gives a shifted, compressed, and/or stretched cosecant function graph. See [link] and [link] .
  • The cotangent function has period π and vertical asymptotes at 0 , ± π , ± 2 π , ... .
  • The range of cotangent is ( , ) , and the function is decreasing at each point in its range.
  • The cotangent is zero at ± π 2 , ± 3 π 2 , ... .
  • f ( x ) = A cot ( B x C ) + D is a cotangent with vertical and/or horizontal stretch/compression and shift. See [link] and [link] .
  • Real-world scenarios can be solved using graphs of trigonometric functions. See [link] .

Section exercises

Verbal

Explain how the graph of the sine function can be used to graph y = csc x .

Since y = csc x is the reciprocal function of y = sin x , you can plot the reciprocal of the coordinates on the graph of y = sin x to obtain the y -coordinates of y = csc x . The x -intercepts of the graph y = sin x are the vertical asymptotes for the graph of y = csc x .

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask