<< Chapter < Page Chapter >> Page >

Evaluate each of the following.

  1. sin −1 ( −1 )
  2. tan −1 ( −1 )
  3. cos −1 ( −1 )
  4. cos −1 ( 1 2 )

a. π 2 ; b. π 4 ; c. π ; d. π 3

Got questions? Get instant answers now!

Using a calculator to evaluate inverse trigonometric functions

To evaluate inverse trigonometric functions that do not involve the special angles discussed previously, we will need to use a calculator or other type of technology. Most scientific calculators and calculator-emulating applications have specific keys or buttons for the inverse sine, cosine, and tangent functions. These may be labeled, for example, SIN-1, ARCSIN, or ASIN.

In the previous chapter, we worked with trigonometry on a right triangle to solve for the sides of a triangle given one side and an additional angle. Using the inverse trigonometric functions, we can solve for the angles of a right triangle given two sides, and we can use a calculator to find the values to several decimal places.

In these examples and exercises, the answers will be interpreted as angles and we will use θ as the independent variable. The value displayed on the calculator may be in degrees or radians, so be sure to set the mode appropriate to the application.

Evaluating the inverse sine on a calculator

Evaluate sin 1 ( 0.97 ) using a calculator.

Because the output of the inverse function is an angle, the calculator will give us a degree value if in degree mode and a radian value if in radian mode. Calculators also use the same domain restrictions on the angles as we are using.

In radian mode, sin 1 ( 0.97 ) 1.3252. In degree mode, sin 1 ( 0.97 ) 75.93°. Note that in calculus and beyond we will use radians in almost all cases.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Evaluate cos 1 ( 0.4 ) using a calculator.

1.9823 or 113.578°

Got questions? Get instant answers now!

Given two sides of a right triangle like the one shown in [link] , find an angle.

An illustration of a right triangle with an angle theta. Adjacent to theta is the side a, opposite theta is the side p, and the hypoteneuse is side h.
  1. If one given side is the hypotenuse of length h and the side of length a adjacent to the desired angle is given, use the equation θ = cos 1 ( a h ) .
  2. If one given side is the hypotenuse of length h and the side of length p opposite to the desired angle is given, use the equation θ = sin 1 ( p h ) .
  3. If the two legs (the sides adjacent to the right angle) are given, then use the equation θ = tan 1 ( p a ) .

Applying the inverse cosine to a right triangle

Solve the triangle in [link] for the angle θ .

An illustration of a right triangle with the angle theta. Adjacent to the angle theta is a side with a length of 9 and a hypoteneuse of length 12.

Because we know the hypotenuse and the side adjacent to the angle, it makes sense for us to use the cosine function.

cos θ = 9 12   θ = cos 1 ( 9 12 ) Apply definition of the inverse .   θ 0.7227  or about  41.4096° Evaluate .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Solve the triangle in [link] for the angle θ .

An illustration of a right triangle with the angle theta. Opposite to the angle theta is a side with a length of 6 and a hypoteneuse of length 10.

sin −1 ( 0.6 ) = 36.87° = 0.6435 radians

Got questions? Get instant answers now!

Finding exact values of composite functions with inverse trigonometric functions

There are times when we need to compose a trigonometric function with an inverse trigonometric function. In these cases, we can usually find exact values for the resulting expressions without resorting to a calculator. Even when the input to the composite function is a variable or an expression, we can often find an expression for the output. To help sort out different cases, let f ( x ) and g ( x ) be two different trigonometric functions belonging to the set { sin ( x ) , cos ( x ) , tan ( x ) } and let f 1 ( y ) and g 1 ( y ) be their inverses.

Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask