<< Chapter < Page Chapter >> Page >
Connection selection.
Connection Description
SMU1 Medium power source with low noise preamplifier
SMU2 Medium power source without preamplifier
SMU3 High Power
GNRD For large currents
Keithley Interactive Test Environment (KITE) interface window.

Measurement analysis

Typical v-i characteristics of jfets

Voltage sweeps are a great way to learn about the device. [link] shows a typical plot of drain-source voltage sweeps at various gate-source voltages while measuring the drain current, I D for a n-channel JFET. The V-I characteristics have four distinct regions. Analysis of these regions can provides critical information about the device characteristics such as the pinch off voltage, V P , transcunductance gain, g m , drain-source channel resistance, R DS , and power dissipation, P D .

A plot of the drain-source voltage sweeps at various gate voltages with the corresponding drain current measurements of an "ideal" n-channel JFET. The four characteristic regions, Ohmic, saturation, breakdown, and pinch-off, are labeled. Figure adapted from Electronic Tutorials (http://www.electronic-tutorials.ws).

Ohmic region (linear region)

This region is bounded by V DS <V P . Here the JFET begins to flow a drain current with a linear response to the voltage, behaving like a variable resistor. In this region the drain-source channel resistance, R DS is modeled by [link] , where ΔV DS is the change in drain-source voltage, ΔI D is the change in drain current, and g m is the transcunductance gain. Solving for g m results in [link] .

R DS = ΔV DS ΔI D = 1 g m size 12{R rSub { size 8{ ital "DS"} } = { {ΔV rSub { size 8{ ital "DS"} } } over {ΔI rSub { size 8{D} } } } = { {1} over {g rSub { size 8{m} } } } } {}
g m = ΔI D ΔV DS = 1 R DS size 12{g rSub { size 8{m} } = { {ΔI rSub { size 8{D} } } over {ΔV rSub { size 8{ ital "DS"} } } } = { {1} over {R rSub { size 8{ ital "DS"} } } } } {}

Saturation region

This is the region where the JFET is completely “ON”. The maximum amount of current is flowing for the given gate-source voltage. In this region the drain current can be modeled by the [link] , where I D is the drain current, I DSS is the maximum current, V GS is the gate-source voltage, and V P is the pinch off voltage. Solving for the pinch off voltage results in [link] .

I D = I DSS 1 V GS V P 2 size 12{I rSub { size 8{D} } =I rSub { size 8{ ital "DSS"} } left (1 - { {V rSub { size 8{ ital "GS"} } } over {V rSub { size 8{P} } } } right ) rSup { size 8{2} } } {}
V P = 1 V GS I D I DSS size 12{V rSub { size 8{P} } =1 - { {V rSub { size 8{ ital "GS"} } } over { sqrt { { {I rSub { size 8{D} } } over {I rSub { size 8{ ital "DSS"} } } } } } } } {}

Breakdown region

This region is characterized by the sudden increase in current. The drain-source voltage supplied exceeds the resistive limit of the semiconducting channel, resulting in the transistor to break down and flow an uncontrolled current.

Pinch-off region (cutoff region)

In this region the gate-source voltage is sufficient to restrict the flow through the channel, in effect cutting off the drain current. The power dissipation, P D , can be solved utilizing Ohms law (I = V/R) for any region using [link] .

LEED IV curve

The p-channel JFET V-I characteristics behave similarly except that the voltages are reversed. Specifically, the pinch off point is reached when the gate-source voltage is increased in a positive direction, and the saturation region is met when the drain-source voltage is increased in the negative direction.

Typical v-i characteristics of mosfets

[link] shows a typical plot of drain-source voltage sweeps at various gate-source voltages while measuring the drain current, I D for an ideal n-channel enhancement MOSFET. Like JFETs, the V-I characteristics of MOSFETS have distinct regions that provide valuable information about device transport properties.

A plot of the drain-source voltage sweeps at various gate voltages with the corresponding drain current measurements of an "ideal" n-channel enahnced MOSFET. Here +ve means that the gate-source voltage is increased in the positive direction. Figure adapted from Electronic Tutorials (http://www.electronic-tutorials.ws).

Ohmic region (linear region)

The n-channel enhanced MOSFET behaves linearly, acting like a variable resistor, when the gate-source voltage is greater than the threshold voltage and the drain-source voltage is greater than the gate-source voltage. In this region the drain current can be modeled by [link] , where I D is the drain current, V GS is the gate-source voltage, V T is the threshold voltage, V DS is the drain-source voltage, and k is the geometric factor described by [link] , where µ n is the charge-carrier effective mobility, C OX is the gate oxide capacitance, W is the channel width, and L is the channel length.

FET2
k = μ n C OX W L size 12{k=μ rSub { size 8{n} } C rSub { size 8{ ital "OX"} } { {W} over {L} } } {}

Saturation region

In this region the MOSFET is considered fully “ON”. The drain current for the saturation region is modeled by [link] . The drain current is mainly influenced by the gate-source voltage, while the drain-source voltage has no effect.

I D = k V GS V T 2 size 12{I rSub { size 8{D} } =k left (V rSub { size 8{ ital "GS"} } - V rSub { size 8{T} } right ) rSup { size 8{2} } } {}

Solving for the threshold voltage V T results in [link] .

V T = V GS I D k size 12{V rSub { size 8{T} } =V rSub { size 8{ ital "GS"} } - sqrt { { {I rSub { size 8{D} } } over {k} } } } {}

Pinch-off region (cutoff region)

When the gate-source voltage, V GS , is below the threshold voltage V T the charge carriers in the channel are not available “cutting off” the charge flow. Power dissipation for MOSFETs can also be solved using equation 6 in any region as in the JFET case.

Fet v-i summary

The typical I-V characteristics for the whole family of FETs seen in [link] are plotted in [link] .

Plot of V-I characteristics for the various FET types. Adapted from P. Horowitz and W. Hill, in Art of Electronics, Cambridge University Press, New York, 2 nd Edn., 1994.

From [link] we can see how the doping schemes that lead to enhancement and depletion are displaced along the V GS axis. In addition, from the plot the ON or OFF state can be determined for a given gate-source voltage, where (+) is positive, (0) is zero, and (-) is negative, as seen in [link] .

The ON/OFF state for the various FETs at a given gate-source voltages where (-) is a negative voltage and (+) is a positive voltage.
FET Type V GS = (-) V GS = 0 V GS = (+)
n-channel JFET OFF ON ON
p-channel JFET ON ON OFF
n-channel depletion MOSFET OFF ON ON
p-channel depletion MOSFET ON ON OFF
n-channel enhancement MOSFET OFF OFF ON
p-channel enhancement MOSFET ON ON OFF

Bibliography

  • US Patent, US2524035A, 1950.
  • P. Horowitz and W. Hill, in Art of Electronics, Cambridge University Press, New York, 2 nd Edn., 1994.
  • Electronics Tutorials, http://www.electronics-tutorials.ws/ (accessed February 2015).
  • C. Alexander and M. Sadiku, in Fundamentals of Electric Circuits , McGraw-Hill Education, New York, 4 th Edn., 2009.
  • Interactive Explanations for Semiconductor Devices, http://www-g.eng.cam.ac.uk/mmg/teaching/linearcircuits/index.html (accessed February 2015).
  • D. Neamen, in An Introduction to Semiconductor Devices , McGraw-Hill Education, New York, 1 st Edn., 2005.

Questions & Answers

how do you get the 2/50
Abba Reply
number of sport play by 50 student construct discrete data
Aminu Reply
width of the frangebany leaves on how to write a introduction
Theresa Reply
Solve the mean of variance
Veronica Reply
Step 1: Find the mean. To find the mean, add up all the scores, then divide them by the number of scores. ... Step 2: Find each score's deviation from the mean. ... Step 3: Square each deviation from the mean. ... Step 4: Find the sum of squares. ... Step 5: Divide the sum of squares by n – 1 or N.
kenneth
what is error
Yakuba Reply
Is mistake done to something
Vutshila
Hy
anas
hy
What is the life teble
anas
hy
Jibrin
statistics is the analyzing of data
Tajudeen Reply
what is statics?
Zelalem Reply
how do you calculate mean
Gloria Reply
diveving the sum if all values
Shaynaynay
let A1,A2 and A3 events be independent,show that (A1)^c, (A2)^c and (A3)^c are independent?
Fisaye Reply
what is statistics
Akhisani Reply
data collected all over the world
Shaynaynay
construct a less than and more than table
Imad Reply
The sample of 16 students is taken. The average age in the sample was 22 years with astandard deviation of 6 years. Construct a 95% confidence interval for the age of the population.
Aschalew Reply
Bhartdarshan' is an internet-based travel agency wherein customer can see videos of the cities they plant to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400 a. what is the probability of getting more than 12,000 hits? b. what is the probability of getting fewer than 9,000 hits?
Akshay Reply
Bhartdarshan'is an internet-based travel agency wherein customer can see videos of the cities they plan to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400. a. What is the probability of getting more than 12,000 hits
Akshay
1
Bright
Sorry i want to learn more about this question
Bright
Someone help
Bright
a= 0.20233 b=0.3384
Sufiyan
a
Shaynaynay
How do I interpret level of significance?
Mohd Reply
It depends on your business problem or in Machine Learning you could use ROC- AUC cruve to decide the threshold value
Shivam
how skewness and kurtosis are used in statistics
Owen Reply
yes what is it
Taneeya
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?

Ask