<< Chapter < Page Chapter >> Page >

In fact, the mass m size 12{m} {} and the force constant k size 12{k} {} are the only factors that affect the period and frequency of simple harmonic motion.

Period of simple harmonic oscillator

The period of a simple harmonic oscillator is given by

T = m k size 12{T=2π sqrt { { {m} over {k} } } } {}

and, because f = 1 / T size 12{f=1/T} {} , the frequency of a simple harmonic oscillator is

f = 1 k m . size 12{f= { {1} over {2π} } sqrt { { {k} over {m} } } } {}

Note that neither T size 12{T} {} nor f size 12{f} {} has any dependence on amplitude.

Take-home experiment: mass and ruler oscillations

Find two identical wooden or plastic rulers. Tape one end of each ruler firmly to the edge of a table so that the length of each ruler that protrudes from the table is the same. On the free end of one ruler tape a heavy object such as a few large coins. Pluck the ends of the rulers at the same time and observe which one undergoes more cycles in a time period, and measure the period of oscillation of each of the rulers.

Calculate the frequency and period of oscillations: bad shock absorbers in a car

If the shock absorbers in a car go bad, then the car will oscillate at the least provocation, such as when going over bumps in the road and after stopping (See [link] ). Calculate the frequency and period of these oscillations for such a car if the car’s mass (including its load) is 900 kg and the force constant ( k size 12{k} {} ) of the suspension system is 6 . 53 × 10 4 N/m size 12{6 "." "53" times "10" rSup { size 8{4} } `"N/m"} {} .

Strategy

The frequency of the car’s oscillations will be that of a simple harmonic oscillator as given in the equation f = 1 k m size 12{f= { {1} over {2π} } sqrt { { {k} over {m} } } } {} . The mass and the force constant are both given.

Solution

  1. Enter the known values of k and m :
    f = 1 k m = 1 6 . 53 × 10 4 N/m 900 kg . size 12{f= { {1} over {2π} } sqrt { { {k} over {m} } } = { {1} over {2π} } sqrt { { {6 "." "53" times "10" rSup { size 8{4} } "N/m"} over {"900"" kg"} } } } {}
  2. Calculate the frequency:
    1 72. 6 / s –2 = 1 . 3656 / s –1 1 . 36 / s –1 = 1.36 Hz . size 12{ { {1} over {2π} } sqrt {"72" "." 6/s rSup { size 8{2} } } =1 "." "36"/s=1 "." "36 Hz"} {}
  3. You could use T = m k size 12{T=2π sqrt { { {m} over {k} } } } {} to calculate the period, but it is simpler to use the relationship T = 1 / f size 12{T=1/f} {} and substitute the value just found for f size 12{f} {} :
    T = 1 f = 1 1 . 356 Hz = 0 . 738 s . size 12{T= { {1} over {f} } = { {1} over {1 "." "36"" Hz"} } =0 "." "737"" s"} {}

Discussion

The values of T size 12{T} {} and f size 12{f} {} both seem about right for a bouncing car. You can observe these oscillations if you push down hard on the end of a car and let go.

Got questions? Get instant answers now!

If a time-exposure photograph of the bouncing car were taken as it drove by, the headlight would make a wavelike streak, as shown in [link] . Similarly, [link] shows an object bouncing on a spring as it leaves a wavelike "trace of its position on a moving strip of paper. Both waves are sine functions. All simple harmonic motion is intimately related to sine and cosine waves.

The figure shows the front right side of a running car on an uneven rough surface which also shows the driver in the driving seat. There is an oscillating sine wave drawn from left to the right side horizontally throughout the figure.
The bouncing car makes a wavelike motion. If the restoring force in the suspension system can be described only by Hooke’s law, then the wave is a sine function. (The wave is the trace produced by the headlight as the car moves to the right.)
There are two iron paper roll bars standing vertically with a paper strip stitched from one bar to the other. There is a vertical hanging spring just over the middle of the two bars, perpendicular to the strip of the paper, having an object with mass m tied to it. There is a line graph with amplitude scale as X, zero and negative X on the left side of the paper strip, vertically over each other with their points marked. A perpendicular line is drawn through this amplitude scale toward the right with a point T marked over it, showing the time duration of the amplitude. This line has an oscillating wave drawn through it.
The vertical position of an object bouncing on a spring is recorded on a strip of moving paper, leaving a sine wave.

The displacement as a function of time t in any simple harmonic motion—that is, one in which the net restoring force can be described by Hooke’s law, is given by

x t = X cos 2 πt T , size 12{x left (t right )=X"cos" { {2π`t} over {T} } } {}

where X size 12{X} {} is amplitude. At t = 0 size 12{t=0} {} , the initial position is x 0 = X size 12{x rSub { size 8{0} } =X} {} , and the displacement oscillates back and forth with a period T . (When t = T , we get x = X size 12{x=X} {} again because cos = 1 .). Furthermore, from this expression for x size 12{x} {} , the velocity v size 12{v} {} as a function of time is given by:

Questions & Answers

Ayele, K., 2003. Introductory Economics, 3rd ed., Addis Ababa.
Widad Reply
can you send the book attached ?
Ariel
?
Ariel
What is economics
Widad Reply
the study of how humans make choices under conditions of scarcity
AI-Robot
U(x,y) = (x×y)1/2 find mu of x for y
Desalegn Reply
U(x,y) = (x×y)1/2 find mu of x for y
Desalegn
what is ecnomics
Jan Reply
this is the study of how the society manages it's scarce resources
Belonwu
what is macroeconomic
John Reply
macroeconomic is the branch of economics which studies actions, scale, activities and behaviour of the aggregate economy as a whole.
husaini
etc
husaini
difference between firm and industry
husaini Reply
what's the difference between a firm and an industry
Abdul
firm is the unit which transform inputs to output where as industry contain combination of firms with similar production 😅😅
Abdulraufu
Suppose the demand function that a firm faces shifted from Qd  120 3P to Qd  90  3P and the supply function has shifted from QS  20  2P to QS 10  2P . a) Find the effect of this change on price and quantity. b) Which of the changes in demand and supply is higher?
Toofiq Reply
explain standard reason why economic is a science
innocent Reply
factors influencing supply
Petrus Reply
what is economic.
Milan Reply
scares means__________________ends resources. unlimited
Jan
economics is a science that studies human behaviour as a relationship b/w ends and scares means which have alternative uses
Jan
calculate the profit maximizing for demand and supply
Zarshad Reply
Why qualify 28 supplies
Milan
what are explicit costs
Nomsa Reply
out-of-pocket costs for a firm, for example, payments for wages and salaries, rent, or materials
AI-Robot
concepts of supply in microeconomics
David Reply
economic overview notes
Amahle Reply
identify a demand and a supply curve
Salome Reply
i don't know
Parul
there's a difference
Aryan
Demand curve shows that how supply and others conditions affect on demand of a particular thing and what percent demand increase whith increase of supply of goods
Israr
Hi Sir please how do u calculate Cross elastic demand and income elastic demand?
Abari
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask