<< Chapter < Page Chapter >> Page >

The number of electrons that can be in a subshell depends entirely on the value of l size 12{l} {} . Once l size 12{l} {} is known, there are a fixed number of values of m l size 12{m rSub { size 8{l} } } {} , each of which can have two values for m s size 12{m rSub { size 8{s} } } {} First, since m l size 12{m rSub { size 8{l} } } {} goes from l size 12{ - l} {} to l in steps of 1, there are 2 l + 1 size 12{2l+1} {} possibilities. This number is multiplied by 2, since each electron can be spin up or spin down. Thus the maximum number of electrons that can be in a subshell is 2 2 l + 1 size 12{2 left (2l+1 right )} {} .

For example, the 2 s size 12{2s} {} subshell in [link] has a maximum of 2 electrons in it, since 2 2 l + 1 = 2 0 + 1 = 2 size 12{2 left (2l+1 right )=2 left (0+1 right )=2} {} for this subshell. Similarly, the 2 p size 12{2p} {} subshell has a maximum of 6 electrons, since 2 2 l + 1 = 2 2 + 1 = 6 size 12{2 left (2l+1 right )=2 left (2+1 right )=6} {} . For a shell, the maximum number is the sum of what can fit in the subshells. Some algebra shows that the maximum number of electrons that can be in a shell is 2 n 2 size 12{2n rSup { size 8{2} } } {} .

For example, for the first shell n = 1 size 12{n=1} {} , and so 2 n 2 = 2 size 12{2n rSup { size 8{2} } =2} {} . We have already seen that only two electrons can be in the n = 1 size 12{n=1} {} shell. Similarly, for the second shell, n = 2 size 12{n=2} {} , and so 2 n 2 = 8 size 12{2n rSup { size 8{2} } =8} {} . As found in [link] , the total number of electrons in the n = 2 size 12{n=2} {} shell is 8.

Subshells and totals for n = 3 size 12{n=3} {}

How many subshells are in the n = 3 size 12{n=3} {} shell? Identify each subshell, calculate the maximum number of electrons that will fit into each, and verify that the total is 2 n 2 size 12{2n rSup { size 8{2} } } {} .

Strategy

Subshells are determined by the value of l size 12{l} {} ; thus, we first determine which values of l size 12{ ital "ls"} {} are allowed, and then we apply the equation “maximum number of electrons that can be in a subshell = 2 2 l + 1 size 12{2 left (2l+1 right )} {} ” to find the number of electrons in each subshell.

Solution

Since n = 3 size 12{n=3} {} , we know that l can be 0, 1 , or 2 ; thus, there are three possible subshells. In standard notation, they are labeled the 3 s , 3 p , and 3 d size 12{3d} {} subshells. We have already seen that 2 electrons can be in an s state, and 6 in a p size 12{p} {} state, but let us use the equation “maximum number of electrons that can be in a subshell = 2 2 l + 1 size 12{2 left (2l+1 right )} {} ” to calculate the maximum number in each:

3 s has l = 0 ; thus, 2 2 l + 1 = 2 0 + 1 = 2 3 p has l = 1; thus, 2 2 l + 1 = 2 2 + 1 = 6 3 d has l = 2; thus, 2 2 l + 1 = 2 4 + 1 = 10 Total = 18 ( in the n = 3 shell )

The equation “maximum number of electrons that can be in a shell = 2 n 2 size 12{2n rSup { size 8{2} } } {} ” gives the maximum number in the n = 3 size 12{n=3} {} shell to be

Maximum number of electrons = 2 n 2 = 2 3 2 = 2 9 = 18.

Discussion

The total number of electrons in the three possible subshells is thus the same as the formula 2 n 2 size 12{2n rSup { size 8{2} } } {} . In standard (spectroscopic) notation, a filled n = 3 size 12{n=3} {} shell is denoted as 3 s 2 3 p 6 3 d 10 size 12{3s rSup { size 8{2} } 3p rSup { size 8{6} } 3d rSup { size 8{"10"} } } {} . Shells do not fill in a simple manner. Before the n = 3 size 12{n=3} {} shell is completely filled, for example, we begin to find electrons in the n = 4 size 12{n=4} {} shell.

Got questions? Get instant answers now!

Shell filling and the periodic table

[link] shows electron configurations for the first 20 elements in the periodic table, starting with hydrogen and its single electron and ending with calcium. The Pauli exclusion principle determines the maximum number of electrons allowed in each shell and subshell. But the order in which the shells and subshells are filled is complicated because of the large numbers of interactions between electrons.

Electron configurations of elements hydrogen through calcium
Element Number of electrons (Z) Ground state configuration
H 1 1 s 1 size 12{1s rSup { size 8{1} } } {}
He 2 1 s 2 size 12{1s rSup { size 8{2} } } {}
Li 3 1 s 2 size 12{1s rSup { size 8{2} } } {} 2 s 1 size 12{2s rSup { size 8{1} } } {}
Be 4 " 2 s 2 size 12{2s rSup { size 8{2} } } {}
B 5 " 2 s 2 size 12{2s rSup { size 8{2} } } {} 2 p 1 size 12{2p rSup { size 8{1} } } {}
C 6 " 2 s 2 size 12{2s rSup { size 8{2} } } {} 2 p 2 size 12{2p rSup { size 8{2} } } {}
N 7 " 2 s 2 size 12{2s rSup { size 8{2} } } {} 2 p 3 size 12{2p rSup { size 8{3} } } {}
O 8 " 2 s 2 size 12{2s rSup { size 8{2} } } {} 2 p 4 size 12{2p rSup { size 8{4} } } {}
F 9 " 2 s 2 size 12{2s rSup { size 8{2} } } {} 2 p 5 size 12{2p rSup { size 8{5} } } {}
Ne 10 " 2 s 2 size 12{2s rSup { size 8{2} } } {} 2 p 6 size 12{2p rSup { size 8{6} } } {}
Na 11 " 2 s 2 size 12{2s rSup { size 8{2} } } {} 2 p 6 size 12{2p rSup { size 8{6} } } {} 3 s 1 size 12{3s rSup { size 8{1} } } {}
Mg 12 " " " 3 s 2 size 12{3s rSup { size 8{2} } } {}
Al 13 " " " 3 s 2 size 12{3s rSup { size 8{2} } } {} 3 p 1 size 12{3p rSup { size 8{1} } } {}
Si 14 " " " 3 s 2 size 12{3s rSup { size 8{2} } } {} 3 p 2 size 12{3p rSup { size 8{2} } } {}
P 15 " " " 3 s 2 size 12{3s rSup { size 8{2} } } {} 3 p 3 size 12{3p rSup { size 8{3} } } {}
S 16 " " " 3 s 2 size 12{3s rSup { size 8{2} } } {} 3 p 4 size 12{3p rSup { size 8{4} } } {}
Cl 17 " " " 3 s 2 size 12{3s rSup { size 8{2} } } {} 3 p 5 size 12{3p rSup { size 8{5} } } {}
Ar 18 " " " 3 s 2 size 12{3s rSup { size 8{2} } } {} 3 p 6 size 12{3p rSup { size 8{6} } } {}
K 19 " " " 3 s 2 size 12{3s rSup { size 8{2} } } {} 3 p 6 size 12{3p rSup { size 8{6} } } {} 4 s 1 size 12{4s rSup { size 8{1} } } {}
Ca 20 " " " " " 4 s 2 size 12{4s rSup { size 8{2} } } {}

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask