<< Chapter < Page Chapter >> Page >

What else can we learn by examining the equation x = x 0 + v 0 t + 1 2 at 2 ? size 12{x=x rSub { size 8{0} } +v rSub { size 8{0} } t+ { {1} over {2} } ital "at" rSup { size 8{2} } } {} We see that:

  • displacement depends on the square of the elapsed time when acceleration is not zero. In [link] , the dragster covers only one fourth of the total distance in the first half of the elapsed time
  • if acceleration is zero, then the initial velocity equals average velocity ( v 0 = v - size 12{v rSub { size 8{0} } = { bar {v}}} {} ) and x = x 0 + v 0 t + 1 2 at 2 size 12{x=x rSub { size 8{0} } +v rSub { size 8{0} } t+ { {1} over {2} } ital "at" rSup { size 8{2} } } {} becomes x = x 0 + v 0 t size 12{x=x rSub { size 8{0} } +v rSub { size 8{0} } t} {}

Solving for final velocity when velocity is not constant ( a 0 )

A fourth useful equation can be obtained from another algebraic manipulation of previous equations.

If we solve v = v 0 + at size 12{v=v rSub { size 8{0} } + ital "at"} {} for t size 12{t} {} , we get

t = v v 0 a . size 12{t= { {v - v rSub { size 8{0} } } over {a} } "." } {}

Substituting this and v - = v 0 + v 2 size 12{ { bar {v}}= { {v rSub { size 8{0} } +v} over {2} } } {} into x = x 0 + v - t size 12{x=x rSub { size 8{0} } + { bar {v}}t} {} , we get

v 2 = v 0 2 + 2 a x x 0 ( constant a ) . size 12{v rSup { size 8{2} } =v rSub { size 8{0} } rSup { size 8{2} } +2a left (x - x rSub { size 8{0} } right )" " \( "constant "a \) "." } {}

Calculating final velocity: dragsters

Calculate the final velocity of the dragster in [link] without using information about time.

Strategy

Draw a sketch.

Acceleration vector arrow pointing toward the right, labeled twenty-six point zero meters per second squared. Initial velocity equals 0. Final velocity equals question mark.

The equation v 2 = v 0 2 + 2 a ( x x 0 ) is ideally suited to this task because it relates velocities, acceleration, and displacement, and no time information is required.

Solution

1. Identify the known values. We know that v 0 = 0 size 12{v rSub { size 8{0} } =0} {} , since the dragster starts from rest. Then we note that x x 0 = 402 m size 12{x - x rSub { size 8{0} } ="402 m"} {} (this was the answer in [link] ). Finally, the average acceleration was given to be a = 26 . 0 m/s 2 size 12{a="26" "." "0 m/s" rSup { size 8{2} } } {} .

2. Plug the knowns into the equation v 2 = v 0 2 + 2 a ( x x 0 ) and solve for v .

v 2 = 0 + 2 26 . 0 m/s 2 402 m . size 12{v rSup { size 8{2} } =0+2 left ("26" "." "0 m/s" rSup { size 8{2} } right ) left ("402 m" right )} {}

Thus

v 2 = 2 . 09 × 10 4 m 2 /s 2 . size 12{v rSup { size 8{2} } =2 "." "09" times "10" rSup { size 8{4} } `m rSup { size 8{2} } "/s" rSup { size 8{2} } } {}

To get v size 12{v} {} , we take the square root:

v = 2 . 09 × 10 4 m 2 /s 2 = 145 m/s .

Discussion

145 m/s is about 522 km/h or about 324 mi/h, but even this breakneck speed is short of the record for the quarter mile. Also, note that a square root has two values; we took the positive value to indicate a velocity in the same direction as the acceleration.

Got questions? Get instant answers now!

An examination of the equation v 2 = v 0 2 + 2 a ( x x 0 ) size 12{v rSup { size 8{2} } =v rSub { size 8{0} } rSup { size 8{2} } +2a \( x - x rSub { size 8{0} } \) } {} can produce further insights into the general relationships among physical quantities:

  • The final velocity depends on how large the acceleration is and the distance over which it acts
  • For a fixed deceleration, a car that is going twice as fast doesn’t simply stop in twice the distance—it takes much further to stop. (This is why we have reduced speed zones near schools.)

Putting equations together

In the following examples, we further explore one-dimensional motion, but in situations requiring slightly more algebraic manipulation. The examples also give insight into problem-solving techniques. The box below provides easy reference to the equations needed.

Summary of kinematic equations (constant a size 12{a} {} )

x = x 0 + v - t size 12{x=`x rSub { size 8{0} } `+` { bar {v}}t} {}
v - = v 0 + v 2 size 12{ { bar {v}}=` { {v rSub { size 8{0} } +v} over {2} } } {}
v = v 0 + at size 12{v=v rSub { size 8{0} } + ital "at"} {}
x = x 0 + v 0 t + 1 2 at 2 size 12{x=x rSub { size 8{0} } +v rSub { size 8{0} } t+ { {1} over {2} } ital "at" rSup { size 8{2} } } {}
v 2 = v 0 2 + 2 a x x 0 size 12{v rSup { size 8{2} } =v rSub { size 8{0} } rSup { size 8{2} } +2a left (x - x rSub { size 8{0} } right )} {}

Calculating displacement: how far does a car go when coming to a halt?

On dry concrete, a car can decelerate at a rate of 7 . 00 m/s 2 size 12{7 "." "00 m/s" rSup { size 8{2} } } {} , whereas on wet concrete it can decelerate at only 5 . 00 m/s 2 size 12{5 "." "00 m/s" rSup { size 8{2} } } {} . Find the distances necessary to stop a car moving at 30.0 m/s (about 110 km/h) (a) on dry concrete and (b) on wet concrete. (c) Repeat both calculations, finding the displacement from the point where the driver sees a traffic light turn red, taking into account his reaction time of 0.500 s to get his foot on the brake.

Strategy

Draw a sketch.

Initial velocity equals thirty meters per second. Final velocity equals 0. Acceleration dry equals negative 7 point zero zero meters per second squared. Acceleration wet equals negative 5 point zero zero meters per second squared.

In order to determine which equations are best to use, we need to list all of the known values and identify exactly what we need to solve for. We shall do this explicitly in the next several examples, using tables to set them off.

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask