<< Chapter < Page Chapter >> Page >

Solution

For this problem, note that v 2 = 0 size 12{v rSub { size 8{2} } =0} {} and use conservation of momentum. Thus,

p 1 = p 1 + p 2 size 12{p rSub { size 8{1} } =p' rSub { size 8{1} } +p' rSub { size 8{2} } } {}

or

m 1 v 1 = m 1 v 1 + m 2 v 2 . size 12{m rSub { size 8{1} } v rSub { size 8{1} } =m rSub { size 8{1} } { {v}} sup { ' } rSub { size 8{1} } +m rSub { size 8{2} } { {v}} sup { ' } rSub { size 8{2} } } {}

Using conservation of internal kinetic energy and that v 2 = 0 size 12{v rSub { size 8{2} } =0} {} ,

1 2 m 1 v 1 2 = 1 2 m 1 v 1 2 + 1 2 m 2 v 2 2 . size 12{ { {1} over {2} } m rSub { size 8{1} } v rSub { size 8{1} rSup { size 8{2} } } = { {1} over {2} } m rSub { size 8{1} } v"" lSub { size 8{1} } ' rSup { size 8{2} } + { {1} over {2} } m rSub { size 8{2} } v rSub { size 8{2} } ' rSup { size 8{2} } } {}

Solving the first equation (momentum equation) for v 2 size 12{ { {v}} sup { ' } rSub { size 8{2} } } {} , we obtain

v 2 = m 1 m 2 v 1 v 1 . size 12{ { {v}} sup { ' } rSub { size 8{2} } = { {m rSub { size 8{1} } } over {m rSub { size 8{2} } } } left (v rSub { size 8{1} } - { {v}} sup { ' } rSub { size 8{1} } right )} {}

Substituting this expression into the second equation (internal kinetic energy equation) eliminates the variable v 2 size 12{ { {v}} sup { ' } rSub { size 8{2} } } {} , leaving only v 1 size 12{ { {v}} sup { ' } rSub { size 8{1} } } {} as an unknown (the algebra is left as an exercise for the reader). There are two solutions to any quadratic equation; in this example, they are

v 1 = 4 . 00 m/s size 12{ { {v}} sup { ' } rSub { size 8{1} } =4 "." "00"`"m/s"} {}

and

v 1 = 3 . 00 m/s . size 12{ { {v}} sup { ' } rSub { size 8{1} } = - 3 "." "00"" m/s"} {}

As noted when quadratic equations were encountered in earlier chapters, both solutions may or may not be meaningful. In this case, the first solution is the same as the initial condition. The first solution thus represents the situation before the collision and is discarded. The second solution ( v 1 = 3 . 00 m/s ) size 12{ \( { {v}} sup { ' } rSub { size 8{1} } = - 3 "." "00"`"m/s" \) } {} is negative, meaning that the first object bounces backward. When this negative value of v 1 size 12{ { {v}} sup { ' } rSub { size 8{1} } } {} is used to find the velocity of the second object after the collision, we get

v 2 = m 1 m 2 v 1 v 1 = 0 . 500 kg 3 . 50 kg 4 . 00 3 . 00 m/s size 12{ { {v}} sup { ' } rSub { size 8{2} } = { {m rSub { size 8{1} } } over {m rSub { size 8{2} } } } left (v rSub { size 8{1} } - { {v}} sup { ' } rSub { size 8{1} } right )= { {0 "." "500"`"kg"} over {3 "." "50"`"kg"} } left [4 "." "00" - left ( - 3 "." "00" right ) right ]`"m/s"} {}

or

v 2 = 1 . 00 m/s . size 12{ { {v}} sup { ' } rSub { size 8{2} } =1 "." "00"`"m/s"} {}

Discussion

The result of this example is intuitively reasonable. A small object strikes a larger one at rest and bounces backward. The larger one is knocked forward, but with a low speed. (This is like a compact car bouncing backward off a full-size SUV that is initially at rest.) As a check, try calculating the internal kinetic energy before and after the collision. You will see that the internal kinetic energy is unchanged at 4.00 J. Also check the total momentum before and after the collision; you will find it, too, is unchanged.

The equations for conservation of momentum and internal kinetic energy as written above can be used to describe any one-dimensional elastic collision of two objects. These equations can be extended to more objects if needed.

Making connections: take-home investigation—ice cubes and elastic collision

Find a few ice cubes which are about the same size and a smooth kitchen tabletop or a table with a glass top. Place the ice cubes on the surface several centimeters away from each other. Flick one ice cube toward a stationary ice cube and observe the path and velocities of the ice cubes after the collision. Try to avoid edge-on collisions and collisions with rotating ice cubes. Have you created approximately elastic collisions? Explain the speeds and directions of the ice cubes using momentum.

Phet explorations: collision lab

Investigate collisions on an air hockey table. Set up your own experiments: vary the number of discs, masses and initial conditions. Is momentum conserved? Is kinetic energy conserved? Vary the elasticity and see what happens.

Collision Lab

Section summary

  • An elastic collision is one that conserves internal kinetic energy.
  • Conservation of kinetic energy and momentum together allow the final velocities to be calculated in terms of initial velocities and masses in one dimensional two-body collisions.

Conceptual questions

What is an elastic collision?

Got questions? Get instant answers now!

Problems&Exercises

Two identical objects (such as billiard balls) have a one-dimensional collision in which one is initially motionless. After the collision, the moving object is stationary and the other moves with the same speed as the other originally had. Show that both momentum and kinetic energy are conserved.

Got questions? Get instant answers now!

Professional Application

Two manned satellites approach one another at a relative speed of 0.250 m/s, intending to dock. The first has a mass of 4 . 00 × 10 3 kg size 12{4 "." "00" times "10" rSup { size 8{3} } " kg"} {} , and the second a mass of 7 . 50 × 10 3 kg size 12{7 "." "50" times "10" rSup { size 8{3} } " kg"} {} . If the two satellites collide elastically rather than dock, what is their final relative velocity?

0.250 m/s

Got questions? Get instant answers now!

A 70.0-kg ice hockey goalie, originally at rest, catches a 0.150-kg hockey puck slapped at him at a velocity of 35.0 m/s. Suppose the goalie and the ice puck have an elastic collision and the puck is reflected back in the direction from which it came. What would their final velocities be in this case?

Got questions? Get instant answers now!

Questions & Answers

what does mean opportunity cost?
Aster Reply
what is poetive effect of population growth
Solomon Reply
what is inflation
Nasir Reply
what is demand
Eleni
what is economics
IMLAN Reply
economics theory describes individual behavior as the result of a process of optimization under constraints the objective to be reached being determined by
Kalkidan
Economics is a branch of social science that deal with How to wise use of resource ,s
Kassie
need
WARKISA
Economic Needs: In economics, needs are goods or services that are necessary for maintaining a certain standard of living. This includes things like healthcare, education, and transportation.
Kalkidan
What is demand and supply
EMPEROR Reply
deman means?
Alex
what is supply?
Alex
ex play supply?
Alex
Money market is a branch or segment of financial market where short-term debt instruments are traded upon. The instruments in this market includes Treasury bills, Bonds, Commercial Papers, Call money among other.
murana Reply
good
Kayode
what is money market
umar Reply
Examine the distinction between theory of comparative cost Advantage and theory of factor proportion
Fatima Reply
What is inflation
Bright Reply
a general and ongoing rise in the level of prices in an economy
AI-Robot
What are the factors that affect demand for a commodity
Florence Reply
price
Kenu
differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask