<< Chapter < Page Chapter >> Page >

Human-made (or artificial) radioactivity has been produced for decades and has many uses. Some of these include medical therapy for cancer, medical imaging and diagnostics, and food preservation by irradiation. Many applications as well as the biological effects of radiation are explored in Medical Applications of Nuclear Physics , but it is clear that radiation is hazardous. A number of tragic examples of this exist, one of the most disastrous being the meltdown and fire at the Chernobyl reactor complex in the Ukraine (see [link] ). Several radioactive isotopes were released in huge quantities, contaminating many thousands of square kilometers and directly affecting hundreds of thousands of people. The most significant releases were of 131 I , 90 Sr , 137 Cs , 239 Pu , 238 U , and 235 U . Estimates are that the total amount of radiation released was about 100 million curies.

Human and medical applications

A person holding a hand held radiation detector near the Chernobyl reactor.
The Chernobyl reactor. More than 100 people died soon after its meltdown, and there will be thousands of deaths from radiation-induced cancer in the future. While the accident was due to a series of human errors, the cleanup efforts were heroic. Most of the immediate fatalities were firefighters and reactor personnel. (credit: Elena Filatova)

What mass of 137 Cs Escaped chernobyl?

It is estimated that the Chernobyl disaster released 6.0 MCi of 137 Cs into the environment. Calculate the mass of 137 Cs released.

Strategy

We can calculate the mass released using Avogadro’s number and the concept of a mole if we can first find the number of nuclei N size 12{N} {} released. Since the activity R size 12{R} {} is given, and the half-life of 137 Cs size 12{"" lSup { size 8{"137"} } "Cs"} {} is found in Appendix B to be 30.2 y, we can use the equation R = 0 . 693 N t 1 / 2 size 12{R= { {0 "." "693"N} over {t rSub { size 8{1/2} } } } } {} to find N size 12{N} {} .

Solution

Solving the equation R = 0 . 693 N t 1 / 2 size 12{R= { {0 "." "693"N} over {t rSub { size 8{1/2} } } } } {} for N size 12{N} {} gives

N = Rt 1/2 0.693 . size 12{N= { { ital "Rt""" lSub { size 8{1/2} } } over {0 "." "693"} } } {}

Entering the given values yields

N = ( 6.0 MCi ) ( 30 . 2 y ) 0 . 693 . size 12{N= { { \( 6 "." 0" MCi" \) \( "30" "." 2" y" \) } over {0 "." "693"} } } {}

Converting curies to becquerels and years to seconds, we get

N = ( 6 . 0 × 10 6 Ci ) ( 3 . 7 × 10 10 Bq/Ci ) ( 30.2 y ) ( 3 . 16 × 10 7 s/y ) 0.693 = 3 . 1 × 10 26 . alignl { stack { size 12{N= { { \( 6 "." 0´"10" rSup { size 8{6} } " Ci" \) \( 3 "." 7´"10" rSup { size 8{"10"} } " Bq/Ci" \) \( "30" "." 2" y" \) \( 3 "." "16"´"10" rSup { size 8{7} } " s/y" \) } over {0 "." "693"} } } {} #" "=3 "." 1´"10" rSup { size 8{"26"} } "." {} } } {}

One mole of a nuclide A X size 12{"" lSup { size 8{A} } X} {} has a mass of A size 12{A} {} grams, so that one mole of 137 Cs size 12{"" lSup { size 8{"137"} } "Cs"} {} has a mass of 137 g. A mole has 6 . 02 × 10 23 size 12{6 "." "02 " times "10" rSup { size 8{"23"} } } {} nuclei. Thus the mass of 137 Cs size 12{"" lSup { size 8{"137"} } "Cs"} {} released was

m = 137 g 6.02 × 10 23 ( 3 . 1 × 10 26 ) = 70 × 10 3 g = 70 kg . alignl { stack { size 12{m= left ( { {"137"" g"} over {6 "." "02 "´"10" rSup { size 8{"23"} } } } right ) \( 3 "." 1´"10" rSup { size 8{"26"} } \) ="70"´"10" rSup { size 8{3} } " g"} {} #" "="70 kg" "." {} } } {}

Discussion

While 70 kg of material may not be a very large mass compared to the amount of fuel in a power plant, it is extremely radioactive, since it only has a 30-year half-life. Six megacuries (6.0 MCi) is an extraordinary amount of activity but is only a fraction of what is produced in nuclear reactors. Similar amounts of the other isotopes were also released at Chernobyl. Although the chances of such a disaster may have seemed small, the consequences were extremely severe, requiring greater caution than was used. More will be said about safe reactor design in the next chapter, but it should be noted that Western reactors have a fundamentally safer design.

Got questions? Get instant answers now!

Activity R size 12{R} {} decreases in time, going to half its original value in one half-life, then to one-fourth its original value in the next half-life, and so on. Since R = 0 . 693 N t 1 / 2 size 12{R= { {0 "." "693"N} over {t rSub { size 8{1/2} } } } } {} , the activity decreases as the number of radioactive nuclei decreases. The equation for R size 12{R} {} as a function of time is found by combining the equations N = N 0 e λt size 12{N=N rSub { size 8{0} } e rSup { size 8{ - λt} } } {} and R = 0 . 693 N t 1 / 2 size 12{R= { {0 "." "693"N} over {t rSub { size 8{1/2} } } } } {} , yielding

Questions & Answers

Ayele, K., 2003. Introductory Economics, 3rd ed., Addis Ababa.
Widad Reply
can you send the book attached ?
Ariel
?
Ariel
What is economics
Widad Reply
the study of how humans make choices under conditions of scarcity
AI-Robot
U(x,y) = (x×y)1/2 find mu of x for y
Desalegn Reply
U(x,y) = (x×y)1/2 find mu of x for y
Desalegn
what is ecnomics
Jan Reply
this is the study of how the society manages it's scarce resources
Belonwu
what is macroeconomic
John Reply
macroeconomic is the branch of economics which studies actions, scale, activities and behaviour of the aggregate economy as a whole.
husaini
etc
husaini
difference between firm and industry
husaini Reply
what's the difference between a firm and an industry
Abdul
firm is the unit which transform inputs to output where as industry contain combination of firms with similar production 😅😅
Abdulraufu
Suppose the demand function that a firm faces shifted from Qd  120 3P to Qd  90  3P and the supply function has shifted from QS  20  2P to QS 10  2P . a) Find the effect of this change on price and quantity. b) Which of the changes in demand and supply is higher?
Toofiq Reply
explain standard reason why economic is a science
innocent Reply
factors influencing supply
Petrus Reply
what is economic.
Milan Reply
scares means__________________ends resources. unlimited
Jan
economics is a science that studies human behaviour as a relationship b/w ends and scares means which have alternative uses
Jan
calculate the profit maximizing for demand and supply
Zarshad Reply
Why qualify 28 supplies
Milan
what are explicit costs
Nomsa Reply
out-of-pocket costs for a firm, for example, payments for wages and salaries, rent, or materials
AI-Robot
concepts of supply in microeconomics
David Reply
economic overview notes
Amahle Reply
identify a demand and a supply curve
Salome Reply
i don't know
Parul
there's a difference
Aryan
Demand curve shows that how supply and others conditions affect on demand of a particular thing and what percent demand increase whith increase of supply of goods
Israr
Hi Sir please how do u calculate Cross elastic demand and income elastic demand?
Abari
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 8

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask