<< Chapter < Page Chapter >> Page >

Heisenberg uncertainty

How does knowing which slit the electron passed through change the pattern? The answer is fundamentally important— measurement affects the system being observed . Information can be lost, and in some cases it is impossible to measure two physical quantities simultaneously to exact precision. For example, you can measure the position of a moving electron by scattering light or other electrons from it. Those probes have momentum themselves, and by scattering from the electron, they change its momentum in a manner that loses information . There is a limit to absolute knowledge, even in principle.

A photograph of a young, smiling Werner Heisenberg.
Werner Heisenberg was one of the best of those physicists who developed early quantum mechanics. Not only did his work enable a description of nature on the very small scale, it also changed our view of the availability of knowledge. Although he is universally recognized for his brilliance and the importance of his work (he received the Nobel Prize in 1932, for example), Heisenberg remained in Germany during World War II and headed the German effort to build a nuclear bomb, permanently alienating himself from most of the scientific community. (credit: Author Unknown, via Wikimedia Commons)

It was Werner Heisenberg who first stated this limit to knowledge in 1929 as a result of his work on quantum mechanics and the wave characteristics of all particles. (See [link] ). Specifically, consider simultaneously measuring the position and momentum of an electron (it could be any particle). There is an uncertainty in position     Δ x size 12{Δx} {} that is approximately equal to the wavelength of the particle. That is,

Δ x λ . size 12{Δx approx λ} {}

As discussed above, a wave is not located at one point in space. If the electron’s position is measured repeatedly, a spread in locations will be observed, implying an uncertainty in position Δ x size 12{Δx} {} . To detect the position of the particle, we must interact with it, such as having it collide with a detector. In the collision, the particle will lose momentum. This change in momentum could be anywhere from close to zero to the total momentum of the particle, p = h / λ size 12{p = h/λ} {} . It is not possible to tell how much momentum will be transferred to a detector, and so there is an uncertainty in momentum     Δ p size 12{Δp } {} , too. In fact, the uncertainty in momentum may be as large as the momentum itself, which in equation form means that

Δ p h λ . size 12{Δp approx { {h} over {λ} } } {}

The uncertainty in position can be reduced by using a shorter-wavelength electron, since Δ x λ size 12{Δx approx λ} {} . But shortening the wavelength increases the uncertainty in momentum, since Δ p h / λ size 12{Δp approx h/λ} {} . Conversely, the uncertainty in momentum can be reduced by using a longer-wavelength electron, but this increases the uncertainty in position. Mathematically, you can express this trade-off by multiplying the uncertainties. The wavelength cancels, leaving

Δ x Δ p h . size 12{ΔxΔp approx h} {}

So if one uncertainty is reduced, the other must increase so that their product is h size 12{ approx h} {} .

With the use of advanced mathematics, Heisenberg showed that the best that can be done in a simultaneous measurement of position and momentum is

Δ x Δ p h . size 12{ΔxΔp>= { {h} over {4π} } } {}

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask