<< Chapter < Page Chapter >> Page >

One of the clever things about this scheme is that only integral charges result, even though the quarks have fractional charge.

All combinations are possible

All quark combinations are possible. [link] lists some of these combinations. When Gell-Mann and Zweig proposed the original three quark flavors, particles corresponding to all combinations of those three had not been observed. The pattern was there, but it was incomplete—much as had been the case in the periodic table of the elements and the chart of nuclides. The Ω size 12{ %OMEGA rSup { size 8{ - {}} } } {} particle, in particular, had not been discovered but was predicted by quark theory. Its combination of three strange quarks, sss size 12{ ital "sss"} {} , gives it a strangeness of 3 size 12{ - 3} {} (see [link] ) and other predictable characteristics, such as spin, charge, approximate mass, and lifetime. If the quark picture is complete, the Ω size 12{ %OMEGA rSup { size 8{ - {}} } } {} should exist. It was first observed in 1964 at Brookhaven National Laboratory and had the predicted characteristics as seen in [link] . The discovery of the Ω size 12{ %OMEGA rSup { size 8{ - {}} } } {} was convincing indirect evidence for the existence of the three original quark flavors and boosted theoretical and experimental efforts to further explore particle physics in terms of quarks.

Patterns and puzzles: atoms, nuclei, and quarks

Patterns in the properties of atoms allowed the periodic table to be developed. From it, previously unknown elements were predicted and observed. Similarly, patterns were observed in the properties of nuclei, leading to the chart of nuclides and successful predictions of previously unknown nuclides. Now with particle physics, patterns imply a quark substructure that, if taken literally, predicts previously unknown particles. These have now been observed in another triumph of underlying unity.

The figure shows a trace of a bubble chamber picture that shows the first observation of an omega minus particle. The trace looks like the branch of a small bush. There is a stem at the bottom labeled K minus, then a vertex from which comes a short arched segment labeled omega minus. This segment branches into a dashed line labeled xi zero and an arched line labeled pie minus. Various other solid and dashed lines continue upwards with various labels, such as lambda zero, gamma, K plus, and so on. From the scale bar in the figure, the sigma minus segment is about five centimeters long, which is much shorter than most of the other segments.
The image relates to the discovery of the Ω size 12{ %OMEGA rSup { size 8{ - {}} } } {} . It is a secondary reaction in which an accelerator-produced K size 12{K rSup { size 8{ - {}} } } {} collides with a proton via the strong force and conserves strangeness to produce the Ω size 12{ %OMEGA rSup { size 8{ - {}} } } {} with characteristics predicted by the quark model. As with other predictions of previously unobserved particles, this gave a tremendous boost to quark theory. (credit: Brookhaven National Laboratory)

Quantum numbers from quark composition

Verify the quantum numbers given for the Ξ 0 size 12{Ξ rSup { size 8{0} } } {} particle in [link] by adding the quantum numbers for its quark composition as given in [link] .

Strategy

The composition of the Ξ 0 size 12{Ξ rSup { size 8{0} } } {} is given as uss size 12{ ital "uss"} {} in [link] . The quantum numbers for the constituent quarks are given in [link] . We will not consider spin, because that is not given for the Ξ 0 size 12{Ξ rSup { size 8{0} } } {} . But we can check on charge and the other quantum numbers given for the quarks.

Solution

The total charge of uss is + 2 3 q e 1 3 q e 1 3 q e = 0 size 12{+ left ( { {2} over {3} } right )q rSub { size 8{e} } - left ( { {1} over {3} } right )q rSub { size 8{e} } - left ( { {1} over {3} } right )q rSub { size 8{e} } =0} {} , which is correct for the Ξ 0 size 12{Ξ rSup { size 8{0} } } {} . The baryon number is + 1 3 + 1 3 + 1 3 = 1 size 12{+ left ( { {1} over {3} } right )+ left ( { {1} over {3} } right )+ left ( { {1} over {3} } right )=1} {} , also correct since the Ξ 0 size 12{Ξ rSup { size 8{0} } } {} is a matter baryon and has B = 1 size 12{B=1} {} , as listed in [link] . Its strangeness is S = 0 1 1 = 2 size 12{S=0 - 1 - 1= - 2} {} , also as expected from [link] . Its charm, bottomness, and topness are 0, as are its lepton family numbers (it is not a lepton).

Discussion

This procedure is similar to what the inventors of the quark hypothesis did when checking to see if their solution to the puzzle of particle patterns was correct. They also checked to see if all combinations were known, thereby predicting the previously unobserved Ω size 12{ %OMEGA rSup { size 8{ - {}} } } {} as the completion of a pattern.

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask