<< Chapter < Page Chapter >> Page >
  • Explain point charges and express the equation for electric potential of a point charge.
  • Distinguish between electric potential and electric field.
  • Determine the electric potential of a point charge given charge and distance.

Point charges, such as electrons, are among the fundamental building blocks of matter. Furthermore, spherical charge distributions (like on a metal sphere) create external electric fields exactly like a point charge. The electric potential due to a point charge is, thus, a case we need to consider. Using calculus to find the work needed to move a test charge q size 12{q} {} from a large distance away to a distance of r size 12{r} {} from a point charge Q size 12{Q} {} , and noting the connection between work and potential W = q Δ V size 12{ left (W= - q?V right )} {} , it can be shown that the electric potential V size 12{V} {} of a point charge is

V = kQ r ( Point Charge ) , size 12{V= { { ital "kQ"} over {r} } \( "Point Charge" \) ,} {}

where k is a constant equal to 9.0 × 10 9 N · m 2 / C 2 .

Electric potential V size 12{V} {} Of a point charge

The electric potential V size 12{V} {} of a point charge is given by

V = kQ r ( Point Charge ) . size 12{V= { { ital "kQ"} over {r} } \( "Point Charge" \) ,} {}

The potential at infinity is chosen to be zero. Thus V size 12{V} {} for a point charge decreases with distance, whereas E size 12{E} {} for a point charge decreases with distance squared:

E = F q = kQ r 2 . size 12{ left (E=F/q right )= ital "kQ/r" rSup { size 8{2} } } {}

Recall that the electric potential V size 12{V} {} is a scalar and has no direction, whereas the electric field E size 12{E} {} is a vector. To find the voltage due to a combination of point charges, you add the individual voltages as numbers. To find the total electric field, you must add the individual fields as vectors , taking magnitude and direction into account. This is consistent with the fact that V size 12{V} {} is closely associated with energy, a scalar, whereas E size 12{E} {} is closely associated with force, a vector.

What voltage is produced by a small charge on a metal sphere?

Charges in static electricity are typically in the nanocoulomb nC size 12{ left ("nC" right )} {} to microcoulomb µC size 12{ left (µC right )} {} range. What is the voltage 5.00 cm away from the center of a 1-cm diameter metal sphere that has a −3.00 nC static charge?

Strategy

As we have discussed in Electric Charge and Electric Field , charge on a metal sphere spreads out uniformly and produces a field like that of a point charge located at its center. Thus we can find the voltage using the equation V = kQ / r size 12{V= ital "kQ"/r} {} .

Solution

Entering known values into the expression for the potential of a point charge, we obtain

V = k Q r = 8.99 × 10 9 N · m 2 / C 2 –3.00 × 10 –9 C 5.00 × 10 –2 m = –539 V. alignl { stack { size 12{V=k { {Q} over {r} } = left (9 "." "00" times "10" rSup { size 8{9} } " N" cdot m rSup { size 8{2} } /C rSup { size 8{2} } right ) { { - 3 "." "00" times "10" rSup { size 8{ - 9} } " C"} over {5 "." "00" times "10" rSup { size 8{"–2"} } " m"} } } {} #= - "540"" V" "." {} } } {}

Discussion

The negative value for voltage means a positive charge would be attracted from a larger distance, since the potential is lower (more negative) than at larger distances. Conversely, a negative charge would be repelled, as expected.

Got questions? Get instant answers now!

What is the excess charge on a van de graaff generator

A demonstration Van de Graaff generator has a 25.0 cm diameter metal sphere that produces a voltage of 100 kV near its surface. (See [link] .) What excess charge resides on the sphere? (Assume that each numerical value here is shown with three significant figures.)

The figure shows a Van de Graaff generator. The generator consists of a flat belt running over two metal pulleys. One pulley is positioned at the top and another at the bottom. The upper pulley is surrounded by an aluminum sphere. The aluminum sphere has a diameter of twenty five centimeters. Inside the sphere, the upper pulley is connected to a conductor which in turn is connected to a voltmeter for measuring the potential on the sphere. The lower pulley is connected to a motor. When the motor is switched on, the lower pulley begins turning the flat belt. The Van de Graaff generator with the above described setup produces a voltage of one hundred kilovolts. The potential on the surface of the sphere will be the same as that of a point charge at the center which is twelve point five centimeters away from the center. Thus the excess charge is calculated using the formula Q equals r times V divided by k.
The voltage of this demonstration Van de Graaff generator is measured between the charged sphere and ground. Earth’s potential is taken to be zero as a reference. The potential of the charged conducting sphere is the same as that of an equal point charge at its center.

Strategy

The potential on the surface will be the same as that of a point charge at the center of the sphere, 12.5 cm away. (The radius of the sphere is 12.5 cm.) We can thus determine the excess charge using the equation

V = kQ r . size 12{V= ital "kQ"/r} {}

Solution

Solving for Q and entering known values gives

Q = rV k = 0 . 125 m 100 × 10 3 V 8.99 × 10 9 N · m 2 / C 2 = 1.39 × 10 –6 C = 1.39 µC. alignl { stack { size 12{Q= { { ital "rV"} over {k} } = { { left (0 "." "12"" m" right ) left ("100"´"10" rSup { size 8{3} } " V" right )} over {9 "." "00"´"10" rSup { size 8{9} } " N" cdot m rSup { size 8{2} } /C rSup { size 8{2} } } } } {} #=1 "." "39"´"10" rSup { size 8{-6} } " C=1" "." "39 "mC "." {} } } {}

Discussion

This is a relatively small charge, but it produces a rather large voltage. We have another indication here that it is difficult to store isolated charges.

Got questions? Get instant answers now!

Questions & Answers

how did you get 1640
Noor Reply
If auger is pair are the roots of equation x2+5x-3=0
Peter Reply
Wayne and Dennis like to ride the bike path from Riverside Park to the beach. Dennis’s speed is seven miles per hour faster than Wayne’s speed, so it takes Wayne 2 hours to ride to the beach while it takes Dennis 1.5 hours for the ride. Find the speed of both bikers.
MATTHEW Reply
420
Sharon
from theory: distance [miles] = speed [mph] × time [hours] info #1 speed_Dennis × 1.5 = speed_Wayne × 2 => speed_Wayne = 0.75 × speed_Dennis (i) info #2 speed_Dennis = speed_Wayne + 7 [mph] (ii) use (i) in (ii) => [...] speed_Dennis = 28 mph speed_Wayne = 21 mph
George
Let W be Wayne's speed in miles per hour and D be Dennis's speed in miles per hour. We know that W + 7 = D and W * 2 = D * 1.5. Substituting the first equation into the second: W * 2 = (W + 7) * 1.5 W * 2 = W * 1.5 + 7 * 1.5 0.5 * W = 7 * 1.5 W = 7 * 3 or 21 W is 21 D = W + 7 D = 21 + 7 D = 28
Salma
Devon is 32 32​​ years older than his son, Milan. The sum of both their ages is 54 54​. Using the variables d d​ and m m​ to represent the ages of Devon and Milan, respectively, write a system of equations to describe this situation. Enter the equations below, separated by a comma.
Aaron Reply
find product (-6m+6) ( 3m²+4m-3)
SIMRAN Reply
-42m²+60m-18
Salma
what is the solution
bill
how did you arrive at this answer?
bill
-24m+3+3mÁ^2
Susan
i really want to learn
Amira
I only got 42 the rest i don't know how to solve it. Please i need help from anyone to help me improve my solving mathematics please
Amira
Hw did u arrive to this answer.
Aphelele
hi
Bajemah
-6m(3mA²+4m-3)+6(3mA²+4m-3) =-18m²A²-24m²+18m+18mA²+24m-18 Rearrange like items -18m²A²-24m²+42m+18A²-18
Salma
complete the table of valuesfor each given equatio then graph. 1.x+2y=3
Jovelyn Reply
x=3-2y
Salma
y=x+3/2
Salma
Hi
Enock
given that (7x-5):(2+4x)=8:7find the value of x
Nandala
3x-12y=18
Kelvin
please why isn't that the 0is in ten thousand place
Grace Reply
please why is it that the 0is in the place of ten thousand
Grace
Send the example to me here and let me see
Stephen
A meditation garden is in the shape of a right triangle, with one leg 7 feet. The length of the hypotenuse is one more than the length of one of the other legs. Find the lengths of the hypotenuse and the other leg
Marry Reply
how far
Abubakar
cool u
Enock
state in which quadrant or on which axis each of the following angles given measure. in standard position would lie 89°
Abegail Reply
hello
BenJay
hi
Method
I am eliacin, I need your help in maths
Rood
how can I help
Sir
hmm can we speak here?
Amoon
however, may I ask you some questions about Algarba?
Amoon
hi
Enock
what the last part of the problem mean?
Roger
The Jones family took a 15 mile canoe ride down the Indian River in three hours. After lunch, the return trip back up the river took five hours. Find the rate, in mph, of the canoe in still water and the rate of the current.
cameron Reply
Shakir works at a computer store. His weekly pay will be either a fixed amount, $925, or $500 plus 12% of his total sales. How much should his total sales be for his variable pay option to exceed the fixed amount of $925.
mahnoor Reply
I'm guessing, but it's somewhere around $4335.00 I think
Lewis
12% of sales will need to exceed 925 - 500, or 425 to exceed fixed amount option. What amount of sales does that equal? 425 ÷ (12÷100) = 3541.67. So the answer is sales greater than 3541.67. Check: Sales = 3542 Commission 12%=425.04 Pay = 500 + 425.04 = 925.04. 925.04 > 925.00
Munster
difference between rational and irrational numbers
Arundhati Reply
When traveling to Great Britain, Bethany exchanged $602 US dollars into £515 British pounds. How many pounds did she receive for each US dollar?
Jakoiya Reply
how to reduced echelon form
Solomon Reply
Jazmine trained for 3 hours on Saturday. She ran 8 miles and then biked 24 miles. Her biking speed is 4 mph faster than her running speed. What is her running speed?
Zack Reply
d=r×t the equation would be 8/r+24/r+4=3 worked out
Sheirtina
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask