<< Chapter < Page Chapter >> Page >
A rigid body is an aggregation of small elements, which can be treated as point mass.

Gravitational field of rigid bodies

We shall develop few relations here for the gravitational field strength of bodies of particular geometric shape without any reference to Earth’s gravitation.

Newton’s law of gravitation is stated strictly in terms of point mass. The expression of gravitational field due to a particle, as derived from this law, serves as starting point for developing expressions of field strength due to rigid bodies. The derivation for field strength for geometric shapes in this module, therefore, is based on developing technique to treat a real body mass as aggregation of small elements and combine individual effects. There is a bit of visualization required as we need to combine vectors, having directional property.

Along these derivations for gravitational field strength, we shall also establish Newton’s shell theory, which has been the important basic consideration for treating spherical mass as point mass.

The celestial bodies - whose gravitational field is appreciable and whose motions are subject of great interest - are usually spherical. Our prime interest, therefore, is to derive expression for field strength of solid sphere. Conceptually, a solid sphere can be considered being composed of infinite numbers of closely packed spherical shells. In turn, a spherical shell can be conceptualized to be aggregation of thin circular rings of different diameters.

The process of finding the net effect of these elements fits perfectly well with integration process. Our major task, therefore, is to suitably set up an integral expression for elemental mass and then integrate the elemental integral between appropriate limits. It is clear from the discussion here that we need to begin the process in the sequence starting from ring -->spherical shell -->solid sphere.

Gravitational field due to a uniform circular ring

We need to find gravitational field at a point “P” lying on the central axis of the ring of mass “M” and radius “a”. The arrangement is shown in the figure. We consider a small mass “dm” on the circular ring. The gravitational field due to this elemental mass is along PA. Its magnitude is given by :

Gravitational field due to a ring

The gravitational field is measured on axial point "P".

E = G m P A 2 = G m a 2 + r 2

We resolve this gravitational field in the direction parallel and perpendicular to the axis in the plane of OAP.

Gravitational field due to a ring

The net gravitational field is axial.

E | | = E cos θ

E = E sin θ

We note two important things. First, we can see from the figure that measures of “y” and “θ” are same for all elemental mass. Further, we are considering equal elemental masses. Therefore, the magnitude of gravitational field due any of the elements of mass “dm” is same, because they are equidistant from point “P”.

Second, perpendicular components of elemental field intensity for pair of elemental masses on diametrically opposite sides of the ring are oppositely directed. On integration, these perpendicular components will add up to zero for the whole of ring. It is clear that we can assume zero field strength perpendicular to axial line, if mass distribution on the ring is uniform. For uniform ring, the net gravitational intensity will be obtained by integrating axial components of elemental field strength only. Hence,

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask