<< Chapter < Page Chapter >> Page >

v = d r d t = d x d t i + d y d t j v = v x i + v y j v = | v | = ( v x 2 + v y 2 )

Similarly, one dimensional motion (For example : x – direction) is described by one of the components of velocity.

v = d r d t = d x d t i v = v x i v = | v | = v x

Few words of caution

Study of kinematics usually brings about closely related concepts, terms and symbols. It is always desirable to be precise and specific in using these terms and symbols. Following list of the terms along with their meaning are given here to work as reminder :

1: Position vector : r : a vector specifying position and drawn from origin to the point occupied by point object

2: Distance : s : length of actual path : not treated as the magnitude of displacement

3: Displacement : AB or Δ r : a vector along the straight line joining end points A and B of the path : its magnitude, | AB | or |Δ r | is not equal to distance, s.

4: Difference of position vector : Δ r : equal to displacement, AB . Direction of Δ r is not same as that of position vector ( r ).

5: Magnitude of displacement : | AB | or |Δ r |: length of shortest path.

6: Average speed : v a : ratio of distance and time interval : not treated as the magnitude of average velocity

7: Speed : v : first differential of distance with respect to time : equal to the magnitude of velocity, | v |

8: Average velocity : v a : ratio of displacement and time interval : its magnitude, | v a | is not equal to average speed, v a .

9: Velocity : v : first differential of displacement or position vector with respect to time

Summary

The paragraphs here are presented to highlight the similarities and differences between the two important concepts of speed and velocity with a view to summarize the discussion held so far.

1: Speed is measured without direction, whereas velocity is measured with direction. Speed and velocity both are calculated at a position or time instant. As such, both of them are independent of actual path. Most physical measurements, like speedometer of cars, determine instantaneous speed. Evidently, speed is the magnitude of velocity,

v = | v |

2: Since, speed is a scalar quantity, it can be plotted on a single axis. For this reason, tangent to distance – time curve gives the speed at that point of the motion. As d s = v X d t , the area under speed – time plot gives distance covered between two time instants.

3: On the other hand, velocity requires three axes to be represented on a plot. It means that a velocity – time plot would need 4 dimensions to be plotted, which is not possible on three dimensional Cartesian coordinate system. A two dimensional velocity and time plot is possible, but is highly complicated to be drawn.

4: One dimensional velocity can be treated as a scalar magnitude with appropriate sign to represent direction. It is, therefore, possible to draw one dimension velocity – time plot.

5: Average speed involves the length of path (distance), whereas average velocity involves shortest distance (displacement). As distance is either greater than or equal to the magnitude of displacement,

s | Δ r | and v a | v a |

Exercises

The position vector of a particle (in meters) is given as a function of time as :

r = 2 t i + 2 t 2 j

Determine the time rate of change of the angle “θ” made by the velocity vector with positive x-axis at time, t = 2 s.

Solution : It is a two dimensional motion. The figure below shows how velocity vector makes an angle "θ" with x-axis of the coordinate system. In order to find the time rate of change of this angle "θ", we need to express trigonometric ratio of the angle in terms of the components of velocity vector. From the figure :

Velocity of a particle in two dimensions

The velocity has two components.

tan θ = v y v x

As given by the expression of position vector, its component in coordinate directions are :

x = 2 t and y = 2 t 2

We obtain expression of the components of velocity in two directions by differentiating "x" and "y" components of position vector with respect to time :

v x = 2 and v y = 4 t

Putting in the trigonometric function, we have :

tan θ = v y v x = 4 t 2 = 2 t

Since we are required to know the time rate of the angle, we differentiate the above trigonometric ratio with respect to time as,

sec 2 θ d θ d t = 2

( 1 + tan 2 θ ) d θ d t = 2 ( 1 + 4 t 2 ) d θ d t = 2 d θ d t = 2 ( 1 + 4 t 2 )

At t = 2 s,

d θ d t = 2 ( 1 + 4 x 2 2 ) = 2 17 rad / s

Got questions? Get instant answers now!

Questions & Answers

What are the factors that affect demand for a commodity
Florence Reply
differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask