<< Chapter < Page Chapter >> Page >
A rigid body is an aggregation of small elements, which can be treated as point mass.

Gravitational field of rigid bodies

We shall develop few relations here for the gravitational field strength of bodies of particular geometric shape without any reference to Earth’s gravitation.

Newton’s law of gravitation is stated strictly in terms of point mass. The expression of gravitational field due to a particle, as derived from this law, serves as starting point for developing expressions of field strength due to rigid bodies. The derivation for field strength for geometric shapes in this module, therefore, is based on developing technique to treat a real body mass as aggregation of small elements and combine individual effects. There is a bit of visualization required as we need to combine vectors, having directional property.

Along these derivations for gravitational field strength, we shall also establish Newton’s shell theory, which has been the important basic consideration for treating spherical mass as point mass.

The celestial bodies - whose gravitational field is appreciable and whose motions are subject of great interest - are usually spherical. Our prime interest, therefore, is to derive expression for field strength of solid sphere. Conceptually, a solid sphere can be considered being composed of infinite numbers of closely packed spherical shells. In turn, a spherical shell can be conceptualized to be aggregation of thin circular rings of different diameters.

The process of finding the net effect of these elements fits perfectly well with integration process. Our major task, therefore, is to suitably set up an integral expression for elemental mass and then integrate the elemental integral between appropriate limits. It is clear from the discussion here that we need to begin the process in the sequence starting from ring -->spherical shell -->solid sphere.

Gravitational field due to a uniform circular ring

We need to find gravitational field at a point “P” lying on the central axis of the ring of mass “M” and radius “a”. The arrangement is shown in the figure. We consider a small mass “dm” on the circular ring. The gravitational field due to this elemental mass is along PA. Its magnitude is given by :

Gravitational field due to a ring

The gravitational field is measured on axial point "P".

E = G m P A 2 = G m a 2 + r 2

We resolve this gravitational field in the direction parallel and perpendicular to the axis in the plane of OAP.

Gravitational field due to a ring

The net gravitational field is axial.

E | | = E cos θ

E = E sin θ

We note two important things. First, we can see from the figure that measures of “y” and “θ” are same for all elemental mass. Further, we are considering equal elemental masses. Therefore, the magnitude of gravitational field due any of the elements of mass “dm” is same, because they are equidistant from point “P”.

Second, perpendicular components of elemental field intensity for pair of elemental masses on diametrically opposite sides of the ring are oppositely directed. On integration, these perpendicular components will add up to zero for the whole of ring. It is clear that we can assume zero field strength perpendicular to axial line, if mass distribution on the ring is uniform. For uniform ring, the net gravitational intensity will be obtained by integrating axial components of elemental field strength only. Hence,

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask