<< Chapter < Page Chapter >> Page >
Gravitational potential energy is associated with a system of particles, which are interacted by gravitational force.

The concept of potential energy is linked to a system – not to a single particle or body. So is the case with gravitational potential energy. True nature of this form of energy is often concealed in practical consideration and reference to Earth. Gravitational energy is not limited to Earth, but is applicable to any two masses of any size and at any location. Clearly, we need to expand our understanding of various physical concepts related with gravitational potential energy.

Here, we shall recapitulate earlier discussions on potential energy and apply the same in the context of gravitational force.

Change in gravitational potential energy

The change in the gravitational potential energy of a system is related to work done by the gravitational force. In this section, we shall derive an expression to determine change in potential energy for a system of two particles. For this, we consider an elementary set up, which consists of a stationary particle of mass, " m 1 " and another particle of mass, " m 2 ", which moves from one position to another.

Now, we know that change in potential energy of the system is equal to negative of the work by gravitational force for the displacement of second particle :

Δ U = - W G

On the other hand, work by gravitational force is given as :

W G = F G d r

Combining two equations, the mathematical expression for determining change in potential energy of the system is obtained as :

Δ U = r 1 r 2 F G d r

In order to evaluate this integral, we need to set up the differential equation first. For this, we assume that stationary particle is situated at the origin of reference. Further, we consider an intermediate position of the particle of mass " m 2 " between two positions through which it is moved along a straight line. The change in potential energy of the system as the particle moves from position “r” to “r+dr” is :

d U = F G d r

Change in gravitational potential energy

The particle is moved from one position to another.

We get the expression for the change in gravitational potential energy by integrating between initial and final positions of the second particle as :

Δ U = r 1 r 2 F G d r

We substitute gravitational force with its expression as given by Newton's law of gravitation,

F = - G m 1 m 2 r 2

Note that the expression for gravitational force is preceded by a negative sign as force is directed opposite to displacement. Now, putting this value in the integral expression, we have :

Δ U = r 1 r 2 G m 1 m 2 d r r 2

Taking out constants from the integral and integrating between the limits, we have :

Δ U = G m 1 m 2 [ - 1 r ] r 1 r 2

Δ U = U 2 U 1 = G m 1 m 2 [ 1 r 1 1 r 2 ]

This is the expression of gravitational potential energy change, when a particle of mass “ m 2 ” moves from its position from “ r 1 ” to “ r 2 ” in the presence of particle of mass “ m 1 ”. It is important to realize here that “ 1 r 1 ” is greater than “ 1 r 2 ”. It means that the change in gravitational potential energy is positive in this case. In other words, it means that final value is greater than initial value. Hence, gravitational potential energy of the two particles system is greater for greater linear distance between particles.

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask