<< Chapter < Page Chapter >> Page >
Law of motion in angular form is a general law - not limited to linear or rotational motion. It is just that application of this form of law suits best to rotation that we tend to associate the law with rotational motion only.

The heading of this module (law of motion in angular form - not law of motion in rotational form) points to the subtle difference about angular quantities as applicable to general motion vis-a-vis rotation. The title also indicates that law of motion in angular form is just yet another form of Newton's law - not specific to any particular type of motion. What it means that we can use angular concepts and angular law (including the one being developed here) to even pure translational motion along a straight line.

In earlier module titled Rotation of rigid body , we wrote Newton's second law for rotation as :

τ = I α

This relation is evidently valid for rotation, which involves circular motion of particles constituting the rigid body or that of a particle in a plane perpendicular to a fixed axis of rotation. This is so because, moment of inertia is defined with rotational motion only. It is evident that we can not use this form of Newton's second law for any other motion.

In this module, we shall develop the form of Newton's law, which is based on the concept of angular momentum of a particle about a fixed point in the coordinate reference. The law so derived, ofcourse, will then be shown to yield the version of Newton's second law for rotation, which is a special case.

Newton's second law for a particle in general motion

It was stated in the previous module that angular momentum is defined such that its first time derivative gives torque on the particle. This condition was specified keeping in mind about Newton's second law for translation. Following the logic, let us consider angular momentum of a moving particle moving with respect to a point and find whether first derivative actually yields torque as expected or not?

Angular momentum of the particle about the origin of the coordinate system is :

= r x p = m ( r x v )

The " r " and " v " vectors represent position and velocity vectors respectively as shown in the figure. Taking differentiation of the terms with respect to time, we have :

Angular momentum of particle in motion

The particle is moving with a velocity in 3-D reference system.

t = t { m ( r x v ) }

For constant mass,

t = m t ( r x v )

t = m ( r x v t + r t x v )

By definition, the first time derivative of velocity is the acceleration and first time derivative of position vector is the velocity of the particle. Putting the appropriate terms for these quantities,

t = m ( r x a + v x v )

But, the vector product of a vector with itself is equal to zero as sinθ = sin0° = 0. Hence,

t = m ( r x a )

Rearranging, we have :

t = r x m a = r x F

Indeed the first derivative of angular momentum equals the toque on the particle as expected. Since force on the particle is external force, we can qualify the above relation that first time derivative of angular momentum equals external torque applied on the particle. Next, we should think about a situation when more than one force acts on the particle. According to Newton's second law in translation, we have :

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask