<< Chapter < Page Chapter >> Page >
Rotation of rigid body is governed by an equivalent relation called Newton's second law of rotation.

Rotation of a rigid body is characterized by same angular velocity and acceleration of particles comprising it. The situation is similar to the case of translation in which linear velocity and acceleration of all particles comprising rigid body are same. In the previous module titled Rotation , we discussed torque as the “cause” of rotation and ways to calculate torque. In this module, we seek to study the torque (cause) and angular acceleration (effect) relationship for the rotational motion of a rigid body. In other words, we seek to state Newton’s laws of motion for rotation in line with the one that exists for translation.

Rigid body is composed of particles, which are at fixed distance with respect to each other. In simple words, if a particle "A" is at a distance of 10 mm (say) from another particle "B" within a rigid body, then they continue to remain 10 mm apart during motion. This requirement is important in describing rotational motion of a rigid body. The distribution of mass about the axis affects rotational inertia of the body. As such, change in inter-particle distance shall amount to changing "rotational inertia" of the body.

Before, we proceed we need to distinguish between two separate force requirements for rotational motion. In the previous module, we have discussed the force requirement for the torque which produces angular acceleration or causes rotational motion. What about the centripetal force requirement for a particle of the rigid body to move in circular motion? This force requirement is met by the inter-molecular forces. The requirement of centripetal force is the inherent requirement for circular motion of a particle and thereby for the rotation of rigid body. While studying cause and effect relation for the rotation, it should be clearly understood that we are only concerned with the force requirement of torque for the angular acceleration of the rigid body in rotation.

Newton's first law of rotation

In translation, a particle or particle like rigid body has constant linear velocity unless there is an external force being applied on it. By conjecture, we can extend this law to rotation saying that a rigid body in rotation about a fixed axis has constant angular velocity unless it is subjected to external torque. This is exactly the Newton's first law of rotation.

If the rigid body is at rest, then it will remain in rest. This is the exactly same assertion as for translation. On the other hand, if the rigid body is in rotation with a constant angular velocity, then it will continue to rotate with that angular velocity indefinitely. Of course, we do not realize the second assertion in our daily life because it is almost impossible to get rid of torques opposing rotational motion due to air resistance and resistance caused by the friction at the axis of rotation.

Newton's second law of rotation

Every particle of the rigid body in rotation undergoes circular motion irrespective of the shape of rigid body. The centers of the circular paths described by them lie on the axis of rotation. It should be noted that the different particles, constituting rigid body, have different linear velocities, but same angular velocity. It means that each particle traverses same angle in a given time. The linear velocity of a particle is related to angular velocity as :

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask
Yasser Ibrahim
Start Quiz
Brooke Delaney
Start Exam
Kimberly Nichols
Start Test
Hope Percle
Start Quiz