<< Chapter < Page Chapter >> Page >
This figure has two parts, each of which shows two rough surfaces in close proximity to each other. In the first part, the normal force is small, so that the area of contact between the two surfaces is much smaller than their total area. In the second part, the normal force is large, so that the area of contact between the two surfaces has increased. As a result, the friction between the two surfaces in the second part is also greater than the friction in the first part.
Two rough surfaces in contact have a much smaller area of actual contact than their total area. When there is a greater normal force as a result of a greater applied force, the area of actual contact increases as does friction.

But the atomic-scale view promises to explain far more than the simpler features of friction. The mechanism for how heat is generated is now being determined. In other words, why do surfaces get warmer when rubbed? Essentially, atoms are linked with one another to form lattices. When surfaces rub, the surface atoms adhere and cause atomic lattices to vibrate—essentially creating sound waves that penetrate the material. The sound waves diminish with distance and their energy is converted into heat. Chemical reactions that are related to frictional wear can also occur between atoms and molecules on the surfaces. [link] shows how the tip of a probe drawn across another material is deformed by atomic-scale friction. The force needed to drag the tip can be measured and is found to be related to shear stress, which will be discussed later in this chapter. The variation in shear stress is remarkable (more than a factor of 10 12 size 12{"10" rSup { size 8{"12"} } } {} ) and difficult to predict theoretically, but shear stress is yielding a fundamental understanding of a large-scale phenomenon known since ancient times—friction.

This figure shows a molecular model of a probe that is dragged over the surface of a substrate. The substrate is represented by a rectangular prism, made up of a grid of small spheres, each sphere representing an atom. The probe, made up of a different grid of small spheres, is in the form of an inverted pyramid with a flattened peak. The pyramid is somewhat distorted because of friction.
The tip of a probe is deformed sideways by frictional force as the probe is dragged across a surface. Measurements of how the force varies for different materials are yielding fundamental insights into the atomic nature of friction.

Phet explorations: forces and motion

Explore the forces at work when you try to push a filing cabinet. Create an applied force and see the resulting friction force and total force acting on the cabinet. Charts show the forces, position, velocity, and acceleration vs. time. Draw a free-body diagram of all the forces (including gravitational and normal forces).

Forces and Motion

Test prep for ap courses

When a force of 20 N is applied to a stationary box weighing 40 N, the box does not move. This means the coefficient of static friction

  1. is equal to 0.5.
  2. is greater than 0.5.
  3. is less than 0.5.
  4. cannot be determined.

(b)

Got questions? Get instant answers now!

A 2-kg block slides down a ramp which is at an incline of 25º. If the frictional force is 4.86 N, what is the coefficient of friction? At what incline will the box slide at a constant velocity? Assume g = 10 m/s 2 .

Got questions? Get instant answers now!

A block is given a short push and then slides with constant friction across a horizontal floor. Which statement best explains the direction of the force that friction applies on the moving block?

  1. Friction will be in the same direction as the block's motion because molecular interactions between the block and the floor will deform the block in the direction of motion.
  2. Friction will be in the same direction as the block's motion because thermal energy generated at the interface between the block and the floor adds kinetic energy to the block.
  3. Friction will be in the opposite direction of the block's motion because molecular interactions between the block and the floor will deform the block in the opposite direction of motion.
  4. Friction will be in the opposite direction of the block's motion because thermal energy generated at the interface between the block and the floor converts some of the block's kinetic energy to potential energy.

(c)

Got questions? Get instant answers now!
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask