<< Chapter < Page Chapter >> Page >

Of course, other groups are also of interest. Carbon, silicon, and germanium, for example, have similar chemistries and are in Group 4 (Group IV). Carbon, in particular, is extraordinary in its ability to form many types of bonds and to be part of long chains, such as inorganic molecules. The large group of what are called transitional elements is characterized by the filling of the d size 12{d} {} subshells and crossing of energy levels. Heavier groups, such as the lanthanide series, are more complex—their shells do not fill in simple order. But the groups recognized by chemists such as Mendeleev have an explanation in the substructure of atoms.

Phet explorations: build an atom

Build an atom out of protons, neutrons, and electrons, and see how the element, charge, and mass change. Then play a game to test your ideas!

Build an Atom

Section summary

  • The state of a system is completely described by a complete set of quantum numbers. This set is written as n, l, m l , m s .
  • The Pauli exclusion principle says that no two electrons can have the same set of quantum numbers; that is, no two electrons can be in the same state.
  • This exclusion limits the number of electrons in atomic shells and subshells. Each value of n size 12{n} {} corresponds to a shell, and each value of l size 12{l} {} corresponds to a subshell.
  • The maximum number of electrons that can be in a subshell is 2 2 l + 1 size 12{2 left (2l+1 right )} {} .
  • The maximum number of electrons that can be in a shell is 2 n 2 size 12{2n rSup { size 8{2} } } {} .

Conceptual questions

Identify the shell, subshell, and number of electrons for the following: (a) 2 p 3 size 12{2p rSup { size 8{3} } } {} . (b) 4 d 9 size 12{4d rSup { size 8{9} } } {} . (c) 3 s 1 size 12{3s rSup { size 8{1} } } {} . (d) 5 g 16 size 12{5g rSup { size 8{"16"} } } {} .

Got questions? Get instant answers now!

Which of the following are not allowed? State which rule is violated for any that are not allowed. (a) 1 p 3 size 12{1p rSup { size 8{3} } } {} (b) 2 p 8 size 12{2p rSup { size 8{8} } } {} (c) 3 g 11 size 12{3g rSup { size 8{"11"} } } {} (d) 4 f 2 size 12{4f rSup { size 8{2} } } {}

Got questions? Get instant answers now!

Problem exercises

(a) How many electrons can be in the n = 4 size 12{n=4} {} shell?

(b) What are its subshells, and how many electrons can be in each?

(a) 32. (b) 2 in s , 6 in p , 10 in d , and 14 in f size 12{f} {} , for a total of 32.

Got questions? Get instant answers now!

(a) What is the minimum value of 1 for a subshell that has 11 electrons in it?

(b) If this subshell is in the n = 5 shell, what is the spectroscopic notation for this atom?

Got questions? Get instant answers now!

(a) If one subshell of an atom has 9 electrons in it, what is the minimum value of l size 12{l} {} ? (b) What is the spectroscopic notation for this atom, if this subshell is part of the n = 3 size 12{n=3} {} shell?

(a) 2

(b) 3 d 9 size 12{3d rSup { size 8{9} } } {}

Got questions? Get instant answers now!

(a) List all possible sets of quantum numbers n , l , m l , m s for the n = 3 shell, and determine the number of electrons that can be in the shell and each of its subshells.

(b) Show that the number of electrons in the shell equals 2 n 2 size 12{2n rSup { size 8{2} } } {} and that the number in each subshell is 2 2 l + 1 size 12{2 left (2l+1 right )} {} .

Got questions? Get instant answers now!

Which of the following spectroscopic notations are not allowed? (a) 5 s 1 (b) 1 d 1 (c) 4 s 3 (d) 3 p 7 (e) 5 g 15 . State which rule is violated for each that is not allowed.

(b) n l is violated,

(c) cannot have 3 electrons in s subshell since 3 > ( 2 l + 1 ) = 2

(d) cannot have 7 electrons in p subshell since 7 > ( 2 l + 1 ) = 2 ( 2 + 1 ) = 6

Got questions? Get instant answers now!

Which of the following spectroscopic notations are allowed (that is, which violate none of the rules regarding values of quantum numbers)? (a) 1 s 1 size 12{1s rSup { size 8{1} } } {} (b) 1 d 3 size 12{1d rSup { size 8{3} } } {} (c) 4 s 2 size 12{4s rSup { size 8{2} } } {} (d) 3 p 7 size 12{3p rSup { size 8{7} } } {} (e) 6 h 20 size 12{6h rSup { size 8{"20"} } } {}

Got questions? Get instant answers now!

(a) Using the Pauli exclusion principle and the rules relating the allowed values of the quantum numbers n , l , m l , m s size 12{ left (n,`l,`m rSub { size 8{l} } ,`m rSub { size 8{s} } right )} {} , prove that the maximum number of electrons in a subshell is 2 n 2 size 12{2n rSup { size 8{2} } } {} .

(b) In a similar manner, prove that the maximum number of electrons in a shell is 2 n 2 .

(a) The number of different values of m l size 12{m rSub { size 8{l} } } {} is ± l , ± ( l 1 ) , ..., 0 for each l > 0 size 12{l>0} {} and one for l = 0 ( 2 l + 1 ) . size 12{l=0 drarrow \( 2l+1 \) "." } {} Also an overall factor of 2 since each m l size 12{m rSub { size 8{l} } } {} can have m s size 12{m rSub { size 8{s} } } {} equal to either + 1 / 2 size 12{+1/2} {} or 1 / 2 2 ( 2 l + 1 ) size 12{ - 1/2 drarrow 2 \( 2l+1 \) } {} .

(b) for each value of l size 12{l} {} , you get 2 ( 2 l + 1 ) size 12{2 \( 2l+1 \) } {}

= 0, 1, 2, ..., ( n –1 ) 2 ( 2 ) ( 0 ) + 1 + ( 2 ) ( 1 ) + 1 + . . . . + ( 2 ) ( n 1 ) + 1 = 2 1 + 3 + . . . + ( 2 n 3 ) + ( 2 n 1 ) n terms size 12{ {}=0, 1," 2, " "." "." "." ", " \( "n–1" \) drarrow 2 left lbrace left [ \( 2 \) \( 0 \) +1 right ]+ left [ \( 2 \) \( 1 \) +1 right ]+ "." "." "." "." + left [ \( 2 \) \( n - 1 \) +1 right ] right rbrace = {2 left [1+3+ "." "." "." + \( 2n - 3 \) + \( 2n - 1 \) right ]} underbrace { size 8{n" terms"} } } {} to see that the expression in the box is = n 2 , imagine taking ( n 1 ) size 12{ \( n - 1 \) } {} from the last term and adding it to first term = 2 1 + ( n –1 ) + 3 + . . . + ( 2 n 3 ) + ( 2 n 1 ) ( n 1 ) = 2 n + 3 + . . . . + ( 2 n 3 ) + n . size 12{ {}=2 left [1+ \( n"–1" \) +3+ "." "." "." + \( 2n - 3 \) + \( 2n - 1 \) – \( n - 1 \) right ]=2 left [n+3+ "." "." "." "." + \( 2n - 3 \) +n right ]"." } {} Now take ( n 3 ) size 12{ \( n - 3 \) } {} from penultimate term and add to the second term 2 n + n + . . . + n + n n terms = 2 n 2 size 12{2 { left [n+n+ "." "." "." +n+n right ]} underbrace { size 8{n" terms"} } =2n rSup { size 8{2} } } {} .

Got questions? Get instant answers now!

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask