<< Chapter < Page Chapter >> Page >

The small size of the nucleus also implies that the atom is mostly empty inside. In fact, in Rutherford’s experiment, most alphas went straight through the gold foil with very little scattering, since electrons have such small masses and since the atom was mostly empty with nothing for the alpha to hit. There were already hints of this at the time Rutherford performed his experiments, since energetic electrons had been observed to penetrate thin foils more easily than expected. [link] shows a schematic of the atoms in a thin foil with circles representing the size of the atoms (about 10 10 m size 12{"10" rSup { size 8{ - "10"} } " m"} {} ) and dots representing the nuclei. (The dots are not to scale—if they were, you would need a microscope to see them.) Most alpha particles miss the small nuclei and are only slightly scattered by electrons. Occasionally, (about once in 8000 times in Rutherford’s experiment), an alpha hits a nucleus head-on and is scattered straight backward.

The image shows an enlarged view of atoms in gold foil having a diameter of ten to the power minus ten meter and a dot within it representing the nucleus. A few alpha rays are shown passing through the atoms. Some are scattered as they hit the nuclei while some are just passing through.
An expanded view of the atoms in the gold foil in Rutherford’s experiment. Circles represent the atoms (about 10 10 m size 12{"10" rSup { size 8{ - "10"} } " m"} {} in diameter), while the dots represent the nuclei (about 10 15 m size 12{"10" rSup { size 8{ - "15"} } " m"} {} in diameter). To be visible, the dots are much larger than scale. Most alpha particles crash through but are relatively unaffected because of their high energy and the electron’s small mass. Some, however, head straight toward a nucleus and are scattered straight back. A detailed analysis gives the size and mass of the nucleus.

Based on the size and mass of the nucleus revealed by his experiment, as well as the mass of electrons, Rutherford proposed the planetary model of the atom    . The planetary model of the atom pictures low-mass electrons orbiting a large-mass nucleus. The sizes of the electron orbits are large compared with the size of the nucleus, with mostly vacuum inside the atom. This picture is analogous to how low-mass planets in our solar system orbit the large-mass Sun at distances large compared with the size of the sun. In the atom, the attractive Coulomb force is analogous to gravitation in the planetary system. (See [link] .) Note that a model or mental picture is needed to explain experimental results, since the atom is too small to be directly observed with visible light.

The image shows three elliptical orbits showing electrons’ movement around a positive nucleus. The movement of the electrons in the orbit shown with arrows are opposite to each other.
Rutherford’s planetary model of the atom incorporates the characteristics of the nucleus, electrons, and the size of the atom. This model was the first to recognize the structure of atoms, in which low-mass electrons orbit a very small, massive nucleus in orbits much larger than the nucleus. The atom is mostly empty and is analogous to our planetary system.

Rutherford’s planetary model of the atom was crucial to understanding the characteristics of atoms, and their interactions and energies, as we shall see in the next few sections. Also, it was an indication of how different nature is from the familiar classical world on the small, quantum mechanical scale. The discovery of a substructure to all matter in the form of atoms and molecules was now being taken a step further to reveal a substructure of atoms that was simpler than the 92 elements then known. We have continued to search for deeper substructures, such as those inside the nucleus, with some success. In later chapters, we will follow this quest in the discussion of quarks and other elementary particles, and we will look at the direction the search seems now to be heading.

Phet explorations: rutherford scattering

How did Rutherford figure out the structure of the atom without being able to see it? Simulate the famous experiment in which he disproved the Plum Pudding model of the atom by observing alpha particles bouncing off atoms and determining that they must have a small core.

Rutherford Scattering

Test prep for ap courses

In an experiment, three microscopic latex spheres are sprayed into a chamber and become charged with +3 e , +5 e , and −3 e , respectively. Later, all three spheres collide simultaneously and then separate. Which of the following are possible values for the final charges on the spheres? Select two answers.

  1. +4 e , −4 e , +5 e
  2. −4 e , +4.5 e , +4.5 e
  3. +5 e , −8 e , +7 e
  4. +6 e , +6 e , −7 e

(a), (d)

Got questions? Get instant answers now!

In Millikan’s oil drop experiment, he experimented with various voltage differences between two plates to determine what voltage was necessary to hold a drop motionless. He deduced that the charge on the oil drop could be found by setting the gravitational force on the drop (pointing downward) equal to the electric force (pointing upward):

m drop g = q E ,

where m drop is the mass of the oil drop, g is the gravitational acceleration (9.8 m/s 2 ), q is the net charge of the oil drop, and E is the electric field between the plates. Millikan deduced that the charge on an electron, e , is 1.6 × 10 −19 C.

For a system of oil drops of equal mass (1.0 × 10 −15 kilograms), describe what value or values of the electric field would hold the drops motionless.

Got questions? Get instant answers now!

Section summary

  • Atoms are composed of negatively charged electrons, first proved to exist in cathode-ray-tube experiments, and a positively charged nucleus.
  • All electrons are identical and have a charge-to-mass ratio of
    q e m e = 1.76 × 10 11 C/kg. size 12{ { {q rSub { size 8{e} } } over {m rSub { size 8{e} } } } = - 1 "." "76" times "10" rSup { size 8{"11"} } " C/kg" "." } {}
  • The positive charge in the nuclei is carried by particles called protons, which have a charge-to-mass ratio of
    q p m p = 9 . 57 × 10 7 C/kg . size 12{ { {q rSub { size 8{p} } } over {m rSub { size 8{p} } } } =9 "." "57" times "10" rSup { size 8{7} } " C/kg" "." } {}
  • Mass of electron,
    m e = 9 . 11 × 10 31 kg . size 12{m rSub { size 8{e} } =9 "." "11" times "10" rSup { size 8{ - "31"} } " kg" "." } {}
  • Mass of proton,
    m p = 1 . 67 × 10 27 kg. size 12{m rSub { size 8{p} } =1 "." "67" times "10" rSup { size 8{ - "27"} } " kg"} {}
  • The planetary model of the atom pictures electrons orbiting the nucleus in the same way that planets orbit the sun.

Conceptual questions

What two pieces of evidence allowed the first calculation of m e size 12{m"" lSub { size 8{e} } } {} , the mass of the electron?

(a) The ratios q e / m e size 12{q rSub { size 8{e} } /m rSub { size 8{e} } } {} and q p / m p size 12{q rSub { size 8{p} } /m rSub { size 8{p} } } {} .

(b) The values of q e size 12{q rSub { size 8{e} } } {} and E B size 12{E rSub { size 8{B} } } {} .

(c) The ratio q e / m e size 12{q rSub { size 8{e} } /m rSub { size 8{e} } } {} and q e size 12{q rSub { size 8{e} } } {} .

Justify your response.

Got questions? Get instant answers now!

How do the allowed orbits for electrons in atoms differ from the allowed orbits for planets around the sun? Explain how the correspondence principle applies here.

Got questions? Get instant answers now!

Problem exercises

Rutherford found the size of the nucleus to be about 10 15 m size 12{"10" rSup { size 8{ - "15"} } " m"} {} . This implied a huge density. What would this density be for gold?

6 × 10 20 kg/m 3 size 12{1 "." "93" times "10" rSup { size 8{"25"} } `"kg/m" rSup { size 8{3} } } {}

Got questions? Get instant answers now!

In Millikan’s oil-drop experiment, one looks at a small oil drop held motionless between two plates. Take the voltage between the plates to be 2033 V, and the plate separation to be 2.00 cm. The oil drop (of density 0 . 81 g/cm 3 size 12{0 "." "81 g/cm" rSup { size 8{3} } } {} ) has a diameter of 4 . 0 × 10 6 m size 12{4 "." 0 times "10" rSup { size 8{ - 6} } " m"} {} . Find the charge on the drop, in terms of electron units.

Got questions? Get instant answers now!

(a) An aspiring physicist wants to build a scale model of a hydrogen atom for her science fair project. If the atom is 1.00 m in diameter, how big should she try to make the nucleus?

(b) How easy will this be to do?

(a) 10.0 μm size 12{"10" "." 0" μm"} {}

(b) It isn’t hard to make one of approximately this size. It would be harder to make it exactly 10.0 μm size 12{"10" "." 0" μm"} {} .

Got questions? Get instant answers now!

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask