<< Chapter < Page Chapter >> Page >
R s = R 1 + R 2 + R 3 = 1.00 Ω + 6.00 Ω + 13.0 Ω = 20.0 Ω.

Strategy and Solution for (b)

The current is found using Ohm’s law, V = IR size 12{V= ital "IR"} {} . Entering the value of the applied voltage and the total resistance yields the current for the circuit:

I = V R s = 12 . 0 V 20 . 0 Ω = 0 . 600 A . size 12{I= { {V} over {R rSub { size 8{s} } } } = { {"12" "." 0" V"} over {"20" "." "0 " %OMEGA } } =0 "." "600"" A"} {}

Strategy and Solution for (c)

The voltage—or IR size 12{ ital "IR"} {} drop—in a resistor is given by Ohm’s law. Entering the current and the value of the first resistance yields

V 1 = IR 1 = ( 0 . 600 A ) ( 1 . 0 Ω ) = 0 . 600 V . size 12{V rSub { size 8{1} } = ital "IR" rSub { size 8{1} } = \( 0 "." "600"" A" \) \( 1 "." 0 %OMEGA \) =0 "." "600"" V"} {}

Similarly,

V 2 = IR 2 = ( 0 . 600 A ) ( 6 . 0 Ω ) = 3 . 60 V size 12{V rSub { size 8{2} } = ital "IR" rSub { size 8{2} } = \( 0 "." "600"" A" \) \( 6 "." 0 %OMEGA \) =3 "." "60"" V"} {}

and

V 3 = IR 3 = ( 0 . 600 A ) ( 13 . 0 Ω ) = 7 . 80 V . size 12{V rSub { size 8{3} } = ital "IR" rSub { size 8{3} } = \( 0 "." "600"" A" \) \( "13" "." 0 %OMEGA \) =7 "." "80"" V"} {}

Discussion for (c)

The three IR size 12{ ital "IR"} {} drops add to 12 . 0 V size 12{"12" "." 0`V} {} , as predicted:

V 1 + V 2 + V 3 = ( 0 . 600 + 3 . 60 + 7 . 80 ) V = 12 . 0 V . size 12{V rSub { size 8{1} } +V rSub { size 8{2} } +V rSub { size 8{3} } = \( 0 "." "600" +3 "." "60"+7 "." "80" \) " V"="12" "." 0" V"} {}

Strategy and Solution for (d)

The easiest way to calculate power in watts (W) dissipated by a resistor in a DC circuit is to use Joule’s law    , P = IV size 12{P= ital "IV"} {} , where P size 12{P} {} is electric power. In this case, each resistor has the same full current flowing through it. By substituting Ohm’s law V = IR size 12{V= ital "IR"} {} into Joule’s law, we get the power dissipated by the first resistor as

P 1 = I 2 R 1 = ( 0 . 600 A ) 2 ( 1 . 00 Ω ) = 0 . 360 W . size 12{P rSub { size 8{1} } =I rSup { size 8{2} } R rSub { size 8{1} } = \( 0 "." "600"" A" \) rSup { size 8{2} } \( 1 "." "00" %OMEGA \) =0 "." "360"" W"} {}

Similarly,

P 2 = I 2 R 2 = ( 0 . 600 A ) 2 ( 6 . 00 Ω ) = 2 . 16 W size 12{P rSub { size 8{2} } =I rSup { size 8{2} } R rSub { size 8{2} } = \( 0 "." "600"" A" \) rSup { size 8{2} } \( 6 "." "00" %OMEGA \) =2 "." "16"" W"} {}

and

P 3 = I 2 R 3 = ( 0 . 600 A ) 2 ( 13 . 0 Ω ) = 4 . 68 W . size 12{P rSub { size 8{3} } =I rSup { size 8{2} } R rSub { size 8{3} } = \( 0 "." "600"" A" \) rSup { size 8{2} } \( "13" "." 0 %OMEGA \) =4 "." "68"" W"} {}

Discussion for (d)

Power can also be calculated using either P = IV size 12{P= ital "IV"} {} or P = V 2 R size 12{P= { {V rSup { size 8{2} } } over {R} } } {} , where V size 12{V} {} is the voltage drop across the resistor (not the full voltage of the source). The same values will be obtained.

Strategy and Solution for (e)

The easiest way to calculate power output of the source is to use P = IV size 12{P= ital "IV"} {} , where V size 12{V} {} is the source voltage. This gives

P = ( 0 . 600 A ) ( 12 . 0 V ) = 7 . 20 W . size 12{P= \( 0 "." "600"" A" \) \( "12" "." 0" V" \) =7 "." "20"" W"} {}

Discussion for (e)

Note, coincidentally, that the total power dissipated by the resistors is also 7.20 W, the same as the power put out by the source. That is,

P 1 + P 2 + P 3 = ( 0 . 360 + 2 . 16 + 4 . 68 ) W = 7 . 20 W . size 12{P rSub { size 8{1} } +P rSub { size 8{2} } +P rSub { size 8{3} } = \( 0 "." "360"+2 "." "16"+4 "." "68" \) " W"=7 "." "20"" W"} {}

Power is energy per unit time (watts), and so conservation of energy requires the power output of the source to be equal to the total power dissipated by the resistors.

Major features of resistors in series

  1. Series resistances add: R s = R 1 + R 2 + R 3 + . . . . size 12{R rSub { size 8{s} } =R rSub { size 8{1} } +R rSub { size 8{2} } +R rSub { size 8{3} } + "." "." "." "." } {}
  2. The same current flows through each resistor in series.
  3. Individual resistors in series do not get the total source voltage, but divide it.

Resistors in parallel

[link] shows resistors in parallel    , wired to a voltage source. Resistors are in parallel when each resistor is connected directly to the voltage source by connecting wires having negligible resistance. Each resistor thus has the full voltage of the source applied to it.

Each resistor draws the same current it would if it alone were connected to the voltage source (provided the voltage source is not overloaded). For example, an automobile’s headlights, radio, and so on, are wired in parallel, so that they utilize the full voltage of the source and can operate completely independently. The same is true in your house, or any building. (See [link] (b).)

Part a shows two electrical circuits which are compared. The first electrical circuit is arranged with resistors in parallel. The circuit has three paths, with a voltage source V at one end. Just after the voltage source, the circuit has current I. The first path has resistor R sub one and current I sub one after the resistor. The second path has resistor R sub two and current I sub two after the resistor. The third path has resistor R sub three with current I sub three after the resistor. The first circuit is equivalent to the second circuit. The second circuit has a voltage source V and an equivalent parallel resistance R sub p. Part b shows a complicated electrical wiring diagram of a distribution board that supplies electricity to a house.
(a) Three resistors connected in parallel to a battery and the equivalent single or parallel resistance. (b) Electrical power setup in a house. (credit: Dmitry G, Wikimedia Commons)

To find an expression for the equivalent parallel resistance R p size 12{R rSub { size 8{p} } } {} , let us consider the currents that flow and how they are related to resistance. Since each resistor in the circuit has the full voltage, the currents flowing through the individual resistors are I 1 = V R 1 size 12{I rSub { size 8{1} } = { {V} over {R rSub { size 8{1} } } } } {} , I 2 = V R 2 size 12{I rSub { size 8{2} } = { {V} over {R rSub { size 8{2} } } } } {} , and I 3 = V R 3 size 12{I rSub { size 8{3} } = { {V} over {R rSub { size 8{3} } } } } {} . Conservation of charge implies that the total current I size 12{I} {} produced by the source is the sum of these currents:

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 9

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask