<< Chapter < Page Chapter >> Page >

Relativistic velocity addition

The second postulate of relativity (verified by extensive experimental observation) says that classical velocity addition does not apply to light. Imagine a car traveling at night along a straight road, as in [link] . If classical velocity addition applied to light, then the light from the car’s headlights would approach the observer on the sidewalk at a speed u=v+c size 12{ ital "u=v+c"} {} . But we know that light will move away from the car at speed c size 12{c} {} relative to the driver of the car, and light will move towards the observer on the sidewalk at speed c size 12{c} {} , too.

A car is moving towards right with velocity v. A boy standing on the side-walk observes the car. The velocity of light u primed is shown to be c as observed by the girl in the car and the velocity of light u is also c as observed by the boy.
According to experiment and the second postulate of relativity, light from the car’s headlights moves away from the car at speed c size 12{c} {} and towards the observer on the sidewalk at speed c size 12{c} {} . Classical velocity addition is not valid.

Relativistic velocity addition

Either light is an exception, or the classical velocity addition formula only works at low velocities. The latter is the case. The correct formula for one-dimensional relativistic velocity addition    is

u = v+u 1 + v u c 2 , size 12{ ital "u=" { { ital "v+u'"} over {1+ { {v` ital "u'"} over {c rSup { size 8{2} } } } } } } {}

where v is the relative velocity between two observers, u is the velocity of an object relative to one observer, and u is the velocity relative to the other observer. (For ease of visualization, we often choose to measure u in our reference frame, while someone moving at v relative to us measures u .) Note that the term v u c 2 becomes very small at low velocities, and u = v+u 1 + v u c 2 gives a result very close to classical velocity addition. As before, we see that classical velocity addition is an excellent approximation to the correct relativistic formula for small velocities. No wonder that it seems correct in our experience.

Showing that the speed of light towards an observer is constant (in a vacuum): the speed of light is the speed of light

Suppose a spaceship heading directly towards the Earth at half the speed of light sends a signal to us on a laser-produced beam of light. Given that the light leaves the ship at speed c size 12{c} {} as observed from the ship, calculate the speed at which it approaches the Earth.

A spacecraft is heading towards earth v equals zero point five zero zero times c. A laser beam from the ship travels towards the Earth with velocity c as shown by a vector. A second spaceship traveling away from the Earth. The velocity of the second ship and second laser are the same as the first, but in the opposite direction.

Strategy

Because the light and the spaceship are moving at relativistic speeds, we cannot use simple velocity addition. Instead, we can determine the speed at which the light approaches the Earth using relativistic velocity addition.

Solution

  1. Identify the knowns. v= 0 . 500 c ; u = c
  2. Identify the unknown. u size 12{u} {}
  3. Choose the appropriate equation. u = v+u 1 + v u c 2 size 12{ ital "u=" { { ital "v+u'"} over {1+ { {v` ital "u'"} over {c rSup { size 8{2} } } } } } } {}
  4. Plug the knowns into the equation.
    u = v+u 1 + v u c 2 = 0.500 c + c 1 + ( 0.500 c ) ( c ) c 2 = ( 0.500 + 1 ) c 1 + 0.500 c 2 c 2 = 1.500 c 1 + 0.500 = 1.500 c 1.500 = c

Discussion

Relativistic velocity addition gives the correct result. Light leaves the ship at speed c size 12{c} {} and approaches the Earth at speed c size 12{c} {} . The speed of light is independent of the relative motion of source and observer, whether the observer is on the ship or Earth-bound.

Got questions? Get instant answers now!

Velocities cannot add to greater than the speed of light, provided that v size 12{v} {} is less than c size 12{c} {} and u does not exceed c . The following example illustrates that relativistic velocity addition is not as symmetric as classical velocity addition.

Comparing the speed of light towards and away from an observer: relativistic package delivery

Suppose the spaceship in the previous example is approaching the Earth at half the speed of light and shoots a canister at a speed of 0.750 c . (a) At what velocity will an Earth-bound observer see the canister if it is shot directly towards the Earth? (b) If it is shot directly away from the Earth? (See [link] .)

In part a, a spaceship is moving towards the earth from left to right with a velocity v equals to zero point five zero times c. The spaceships shoots a canister towards earth with velocity u prime equals zero point seven five times c. A man stands stationary on earth observing. In part b, the spaceship shoots the canister away from earth with same velocity. In both the cases, the velocity of the ship is v equals 0 point five zero times c toward left.

Strategy

Because the canister and the spaceship are moving at relativistic speeds, we must determine the speed of the canister by an Earth-bound observer using relativistic velocity addition instead of simple velocity addition.

Solution for (a)

  1. Identify the knowns. v= 0.500 c ; u = 0 . 750 c size 12{u rSup { size 8{'} } = - 0 "." "750"c} {}
  2. Identify the unknown. u size 12{u} {}
  3. Choose the appropriate equation. u= v+u 1 + v u c 2
  4. Plug the knowns into the equation.
    u = v+u 1 + v u c 2 = 0.500 c + 0.750 c 1 + ( 0.500 c ) ( 0.750 c ) c 2 = 1.250 c 1 + 0.375 = 0.909 c

Solution for (b)

  1. Identify the knowns. v = 0.500 c ; u = 0.750 c
  2. Identify the unknown. u
  3. Choose the appropriate equation. u = v+u 1 + v u c 2
  4. Plug the knowns into the equation.
    u = v+u 1 + v u c 2 = 0.500 c + ( 0.750 c ) 1 + ( 0.500 c ) ( 0.750 c ) c 2 = 0.250 c 1 0.375 = 0.400 c

Discussion

The minus sign indicates velocity away from the Earth (in the opposite direction from v ), which means the canister is heading towards the Earth in part (a) and away in part (b), as expected. But relativistic velocities do not add as simply as they do classically. In part (a), the canister does approach the Earth faster, but not at the simple sum of 1.250 c . The total velocity is less than you would get classically. And in part (b), the canister moves away from the Earth at a velocity of 0.400 c , which is faster than the −0.250 c size 12{c} {} you would expect classically. The velocities are not even symmetric. In part (a) the canister moves 0.409 c size 12{c} {} faster than the ship relative to the Earth, whereas in part (b) it moves 0.900 c size 12{c} {} slower than the ship.

Got questions? Get instant answers now!

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask