<< Chapter < Page Chapter >> Page >
KE e = 1 2 ( 9 . 11 × 10 –3 kg ) ( 1455 m/s ) 2 = 9.64 × 10 –25 J .

Converting this to eV by multiplying by ( 1 eV ) / ( 1 . 602 × 10 –19 J ) size 12{ \( "1 eV" \) / \( 1 "." "602" times "10" rSup { size 8{"–19"} } `J \) } {} yields

KE e = 6.02 × 10 –6 eV . size 12{"KE" rSub { size 8{e} } =" 6" "." "06 " times " 10" rSup { size 8{"–6"} } " eV"} {}

The photon energy E is

E = hc λ = 1240 eV nm 500 nm = 2 . 48 eV , size 12{E = { { ital "hc"} over {λ} } = { {" 1240 eV " cdot " nm"} over {"500"" nm"} } = 2 "." "48"" eV"} {}

which is about five orders of magnitude greater.

Discussion

Photon momentum is indeed small. Even if we have huge numbers of them, the total momentum they carry is small. An electron with the same momentum has a 1460 m/s velocity, which is clearly nonrelativistic. A more massive particle with the same momentum would have an even smaller velocity. This is borne out by the fact that it takes far less energy to give an electron the same momentum as a photon. But on a quantum-mechanical scale, especially for high-energy photons interacting with small masses, photon momentum is significant. Even on a large scale, photon momentum can have an effect if there are enough of them and if there is nothing to prevent the slow recoil of matter. Comet tails are one example, but there are also proposals to build space sails that use huge low-mass mirrors (made of aluminized Mylar) to reflect sunlight. In the vacuum of space, the mirrors would gradually recoil and could actually take spacecraft from place to place in the solar system. (See [link] .)

(a) A payload having an umbrella-shaped solar sail attached to it is shown. The direction of movement of payload and direction of incident photons are shown using arrows. (b) A photograph of the top view of a silvery space sail.
(a) Space sails have been proposed that use the momentum of sunlight reflecting from gigantic low-mass sails to propel spacecraft about the solar system. A Russian test model of this (the Cosmos 1) was launched in 2005, but did not make it into orbit due to a rocket failure. (b) A U.S. version of this, labeled LightSail-1, is scheduled for trial launches in the first part of this decade. It will have a 40-m 2 sail. (credit: Kim Newton/NASA)

Relativistic photon momentum

There is a relationship between photon momentum p size 12{p} {} and photon energy E size 12{E} {} that is consistent with the relation given previously for the relativistic total energy of a particle as E 2 = ( pc ) 2 + ( mc ) 2 size 12{E rSup { size 8{2} } = \( ital "pc" \) rSup { size 8{2} } + \( ital "mc" \) rSup { size 8{2} } } {} . We know m size 12{m} {} is zero for a photon, but p size 12{p} {} is not, so that E 2 = ( pc ) 2 + ( mc ) 2 size 12{E rSup { size 8{2} } = \( ital "pc" \) rSup { size 8{2} } + \( ital "mc" \) rSup { size 8{2} } } {} becomes

E = pc , size 12{E = ital "pc"} {}

or

p = E c (photons). size 12{p = { {E} over {c} } } {}

To check the validity of this relation, note that E = hc / λ size 12{E = ital "hc"/λ} {} for a photon. Substituting this into p = E / c size 12{p = E"/c"} {} yields

p = hc / λ / c = h λ , size 12{p = left ( ital "hc"/λ right )/c = { {h} over {λ} } } {}

as determined experimentally and discussed above. Thus, p = E / c size 12{p = E"/c"} {} is equivalent to Compton’s result p = h / λ size 12{p = h/λ} {} . For a further verification of the relationship between photon energy and momentum, see [link] .

Photon detectors

Almost all detection systems talked about thus far—eyes, photographic plates, photomultiplier tubes in microscopes, and CCD cameras—rely on particle-like properties of photons interacting with a sensitive area. A change is caused and either the change is cascaded or zillions of points are recorded to form an image we detect. These detectors are used in biomedical imaging systems, and there is ongoing research into improving the efficiency of receiving photons, particularly by cooling detection systems and reducing thermal effects.

Photon energy and momentum

Show that p = E / c size 12{p = E"/c"} {} for the photon considered in the [link] .

Strategy

We will take the energy E size 12{E} {} found in [link] , divide it by the speed of light, and see if the same momentum is obtained as before.

Solution

Given that the energy of the photon is 2.48 eV and converting this to joules, we get

p = E c = ( 2.48 eV ) ( 1 . 60 × 10 –19 J/eV ) 3 . 00 × 10 8 m/s = 1 . 33 × 10 –27 kg m/s . size 12{p = { {E} over {c} } = { { \( 2 "." "48 eV" \) \( 1 "." "60 " times " 10" rSup { size 8{"–19"} } " J/eV" \) } over {3 "." "00 " times " 10" rSup { size 8{8} } " m/s"} } =" 1" "." "33 " times " 10" rSup { size 8{"–27"} } " kg " cdot " m/s"} {}

Discussion

This value for momentum is the same as found before (note that unrounded values are used in all calculations to avoid even small rounding errors), an expected verification of the relationship p = E / c size 12{p = E"/c"} {} . This also means the relationship between energy, momentum, and mass given by E 2 = ( pc ) 2 + ( mc ) 2 size 12{E rSup { size 8{2} } = \( ital "pc" \) rSup { size 8{2} } + \( ital "mc" \) rSup { size 8{2} } } {} applies to both matter and photons. Once again, note that p size 12{p} {} is not zero, even when m size 12{m} {} is.

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask