<< Chapter < Page Chapter >> Page >

A wave is travelling through a medium until it hits the end of the medium and there is nothing but vacuum beyond. What happens to a mechanical wave? Electromagnetic wave?

  1. reflects backward, continues on
  2. reflects backward, reflects backward
  3. continues on, continues on
  4. stops, continues on

(a)

Got questions? Get instant answers now!

You’re on the moon, skipping around, and your radio breaks. What would be the best way to communicate this problem to your friend, who is also skipping around on the moon: yelling or flashing a light? Why?

Got questions? Get instant answers now!

Given the waveform in [link] (d), if T = 3.0 × 10 9 s and E = 5.0 × 10 5 N / C , which of the following is the correct equation for the wave at the antenna?

  1. ( 5 .0 × 10 5 N / C ) sin ( 2 π ( 3 .0 × 10 9 s ) t )
  2. ( 5 .0 × 10 5 N / C ) sin ( 2 π t ( 3 .0 × 10 9 s ) )
  3. ( 5 .0 × 10 5 N / C ) cos ( 2 π ( 3 .0 × 10 9 s ) t )
  4. ( 5 .0 × 10 5 N / C ) cos ( 2 π t ( 3 .0 × 10 9 s ) )

(d)

Got questions? Get instant answers now!

Given the waveform in [link] (d), if f = 2.0 GHz and E = 6.0 × 10 5 N/C , what is the correct equation for the magnetic field wave at the antenna?

Got questions? Get instant answers now!

In Heinrich Hertz’s spark gap experiment ( [link] ), how will the induced sparks in Loop 2 compare to those created in Loop 1?

  1. Stronger
  2. Weaker
  3. Need to know the tuner settings to tell
  4. Weaker, but how much depends on the tuner settings.

(d)

Got questions? Get instant answers now!

The sun is far away from the Earth, and the intervening space is very close to empty. Yet the tilt of the Earth’s axis of rotation relative to the sun results in seasons. Explain why, given what you have learned in this section.

Got questions? Get instant answers now!

Section summary

  • Electromagnetic waves are created by oscillating charges (which radiate whenever accelerated) and have the same frequency as the oscillation.
  • Since the electric and magnetic fields in most electromagnetic waves are perpendicular to the direction in which the wave moves, it is ordinarily a transverse wave.
  • The strengths of the electric and magnetic parts of the wave are related by
    E B = c , size 12{ { {E} over {B} } = ital " c"} {}

    which implies that the magnetic field B size 12{B} {} is very weak relative to the electric field E size 12{E} {} .

Conceptual questions

The direction of the electric field shown in each part of [link] is that produced by the charge distribution in the wire. Justify the direction shown in each part, using the Coulomb force law and the definition of E = F / q size 12{E= {F} slash {q} } {} , where q size 12{q} {} is a positive test charge.

Got questions? Get instant answers now!

Is the direction of the magnetic field shown in [link] (a) consistent with the right-hand rule for current (RHR-2) in the direction shown in the figure?

Got questions? Get instant answers now!

Why is the direction of the current shown in each part of [link] opposite to the electric field produced by the wire’s charge separation?

Got questions? Get instant answers now!

In which situation shown in [link] will the electromagnetic wave be more successful in inducing a current in the wire? Explain.

Part a of the diagram shows an electromagnetic wave approaching a long straight vertical wire. The wave is shown with the variation of two components E and B. E is a sine wave in vertical plane with small arrows showing the vibrations of particles in the plane. B is a sine wave in a horizontal plane perpendicular to the E wave. The B wave has arrows to show the vibrations of particles in the plane. The waves are shown intersecting each other at the junction of the planes because E and B are perpendicular to each other. The direction of propagation of wave is shown perpendicular to E and B waves. Part b of the diagram shows an electromagnetic wave approaching a long straight vertical wire. The wave is shown with the variation of two components E and B. E is a sine wave in horizontal plane with small arrows showing the vibrations of particles in the plane. B is a sine wave in a vertical plane perpendicular to the E wave. The B wave has arrows to show the vibrations of particles in the plane. The waves are shown intersecting each other at the junction of the planes because E and B are perpendicular to each other. The direction of propagation of wave is shown perpendicular to E and B waves.
Electromagnetic waves approaching long straight wires.
Got questions? Get instant answers now!

In which situation shown in [link] will the electromagnetic wave be more successful in inducing a current in the loop? Explain.

Part a of the diagram shows an electromagnetic wave approaching a receiver loop connected to a tuner. The wave is shown with the variation of two components E and B. E is a sine wave in vertical plane with small arrows showing the vibrations of particles in the plane. B is a sine wave in a horizontal plane perpendicular to the E wave. The B wave has arrows to show the vibrations of particles in the plane. The waves are shown intersecting each other at the junction of the planes because E and B are perpendicular to each other. The direction of propagation of wave is shown perpendicular to E and B waves. Part b of the diagram shows an electromagnetic wave approaching a receiver loop connected to a tuner. The wave is shown with the variation of two components E and B. E is a sine wave in horizontal plane with small arrows showing the vibrations of particles in the plane. B is a sine wave in a vertical plane perpendicular to the E wave. The B wave has arrows to show the vibrations of particles in the plane. The waves are shown intersecting each other at the junction of the planes because E and B are perpendicular to each other. The direction of propagation of wave is shown perpendicular to E and B waves.
Electromagnetic waves approaching a wire loop.
Got questions? Get instant answers now!

Should the straight wire antenna of a radio be vertical or horizontal to best receive radio waves broadcast by a vertical transmitter antenna? How should a loop antenna be aligned to best receive the signals? (Note that the direction of the loop that produces the best reception can be used to determine the location of the source. It is used for that purpose in tracking tagged animals in nature studies, for example.)

Got questions? Get instant answers now!

Under what conditions might wires in a DC circuit emit electromagnetic waves?

Got questions? Get instant answers now!

Give an example of interference of electromagnetic waves.

Got questions? Get instant answers now!

[link] shows the interference pattern of two radio antennas broadcasting the same signal. Explain how this is analogous to the interference pattern for sound produced by two speakers. Could this be used to make a directional antenna system that broadcasts preferentially in certain directions? Explain.

The picture shows an overhead view of a radio broadcast antenna sending signals in the form of waves. Two waves are shown in the diagram with concentric circular wave fonts. The crest and trough are marked as bold and dashed circles respectively. The points where the bold circles of the two different waves meet are marked as points of constructive interference. Arrows point outward from the antenna, joining these points. These arrows show the directions of constructive interference.
An overhead view of two radio broadcast antennas sending the same signal, and the interference pattern they produce.
Got questions? Get instant answers now!

Can an antenna be any length? Explain your answer.

Got questions? Get instant answers now!

Problems&Exercises

What is the maximum electric field strength in an electromagnetic wave that has a maximum magnetic field strength of 5 . 00 × 10 4 T size 12{5 "." "00"×"10" rSup { size 8{-4} } " T"} {} (about 10 times the Earth’s)?

150 kV/m

Got questions? Get instant answers now!

The maximum magnetic field strength of an electromagnetic field is 5 × 10 6 T size 12{5 times "10" rSup { size 8{ - 6} } T} {} . Calculate the maximum electric field strength if the wave is traveling in a medium in which the speed of the wave is 0.75 c size 12{c} {} .

Got questions? Get instant answers now!

Verify the units obtained for magnetic field strength B in [link] (using the equation B = E c ) are in fact teslas (T).

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask