<< Chapter < Page Chapter >> Page >
The figure shows two parallel plates A and B separated by a distance d. Plate A is positively charged, and B is negatively charged. Electric field lines are parallel to one another between the plates and curved near the ends of the plates. The voltages range from a hundred volts at Plate A to zero volts at plate B.
The electric field and equipotential lines between two metal plates.

Making connections: slopes and parallel plates

Consider the parallel plates in [link] . These have equipotential lines that are parallel to the plates in the space between, and evenly spaced. An example of this (with sample values) is given in [link] . One could draw a similar set of equipotential isolines for gravity on the hill shown in [link] . If the hill has any extent at the same slope, the isolines along that extent would be parallel to each other. Furthermore, in regions of constant slope, the isolines would be evenly spaced.

A section of a topographical map along a ridge, with roughly parallel elevation lines.
Note that a topographical map along a ridge has roughly parallel elevation lines, similar to the equipotential lines in [link] .

An important application of electric fields and equipotential lines involves the heart. The heart relies on electrical signals to maintain its rhythm. The movement of electrical signals causes the chambers of the heart to contract and relax. When a person has a heart attack, the movement of these electrical signals may be disturbed. An artificial pacemaker and a defibrillator can be used to initiate the rhythm of electrical signals. The equipotential lines around the heart, the thoracic region, and the axis of the heart are useful ways of monitoring the structure and functions of the heart. An electrocardiogram (ECG) measures the small electric signals being generated during the activity of the heart. More about the relationship between electric fields and the heart is discussed in Energy Stored in Capacitors .

Phet explorations: charges and fields

Move point charges around on the playing field and then view the electric field, voltages, equipotential lines, and more. It's colorful, it's dynamic, it's free.

Charges and Fields

Test prep for ap courses

How would [link] be different with two positive charges replacing the two negative charges?

  1. The equipotential lines would have positive values.
  2. It would actually resemble [link] .
  3. no change
  4. not enough information

(a)

Got questions? Get instant answers now!

Consider two conducting plates, placed on adjacent sides of a square, but with a 1-m space between the corner of the square and the plate. These plates are not touching, not centered on each other, but are at right angles. Each plate is 1 m wide. If the plates are held at a fixed potential difference Δ V , draw the equipotential lines for this system.

Got questions? Get instant answers now!

As isolines of electric potential get closer together, the electric field gets stronger. What shape would a hill have as the isolines of gravitational potential get closer together?

  1. constant slope
  2. steeper slope
  3. shallower slope
  4. a U-shape

(b)

Got questions? Get instant answers now!

Between [link] and [link] , which more closely resembles the gravitational field between two equal masses, and why?

Got questions? Get instant answers now!

How much work is necessary to keep a positive point charge in orbit around a negative point charge?

  1. A lot; this system is unstable.
  2. Just a little; the isolines are far enough apart that crossing them doesn’t take much work.
  3. None; we’re traveling along an isoline, which requires no work.
  4. There’s not enough information to tell.

(c)

Got questions? Get instant answers now!

Consider two conducting plates, placed on adjacent sides of a square, but with a 1-m space between the corner of the square and the plate. These plates are not touching, not centered on each other, but are at right angles. Each plate is 1 m wide. If the plates are held at a fixed potential difference Δ V , sketch the path of both a positively charged object placed between the near ends, and a negatively charged object placed near the open ends.

Got questions? Get instant answers now!

Section summary

  • An equipotential line is a line along which the electric potential is constant.
  • An equipotential surface is a three-dimensional version of equipotential lines.
  • Equipotential lines are always perpendicular to electric field lines.
  • The process by which a conductor can be fixed at zero volts by connecting it to the earth with a good conductor is called grounding.

Conceptual questions

What is an equipotential line? What is an equipotential surface?

Got questions? Get instant answers now!

Explain in your own words why equipotential lines and surfaces must be perpendicular to electric field lines.

Got questions? Get instant answers now!

Can different equipotential lines cross? Explain.

Got questions? Get instant answers now!

Problems&Exercises

(a) Sketch the equipotential lines near a point charge + q size 12{q} {} . Indicate the direction of increasing potential. (b) Do the same for a point charge 3 q size 12{ - 3 "." "00"q} {} .

Got questions? Get instant answers now!

Sketch the equipotential lines for the two equal positive charges shown in [link] . Indicate the direction of increasing potential.

The figure shows two positive charges with electric field lines curving away from each of the charges.
The electric field near two equal positive charges is directed away from each of the charges.
Got questions? Get instant answers now!

[link] shows the electric field lines near two charges q 1 size 12{q rSub { size 8{1} } } {} and q 2 size 12{q rSub { size 8{2} } } {} , the first having a magnitude four times that of the second. Sketch the equipotential lines for these two charges, and indicate the direction of increasing potential.

Got questions? Get instant answers now!

Sketch the equipotential lines a long distance from the charges shown in [link] . Indicate the direction of increasing potential.

The figure shows two nearby charges, q one and q two. Electric field lines move away from q two and toward q one.
The electric field near two charges.
Got questions? Get instant answers now!

Sketch the equipotential lines in the vicinity of two opposite charges, where the negative charge is three times as great in magnitude as the positive. See [link] for a similar situation. Indicate the direction of increasing potential.

Got questions? Get instant answers now!

Sketch the equipotential lines in the vicinity of the negatively charged conductor in [link] . How will these equipotentials look a long distance from the object?

The figure shows a negatively charged conductor that is shaped like an oblong.
A negatively charged conductor.
Got questions? Get instant answers now!

Sketch the equipotential lines surrounding the two conducting plates shown in [link] , given the top plate is positive and the bottom plate has an equal amount of negative charge. Be certain to indicate the distribution of charge on the plates. Is the field strongest where the plates are closest? Why should it be?

Two conducting plates with the top one positively charged and the bottom one with an equal amount of negative charge.

Got questions? Get instant answers now!

(a) Sketch the electric field lines in the vicinity of the charged insulator in [link] . Note its non-uniform charge distribution. (b) Sketch equipotential lines surrounding the insulator. Indicate the direction of increasing potential.

A rod marked with many plus symbols to indicate electric charge. Most of the pluses are concentrated near one end of the rod. A few are in the middle and one is at the other end.
A charged insulating rod such as might be used in a classroom demonstration.

Got questions? Get instant answers now!

The naturally occurring charge on the ground on a fine day out in the open country is –1 . 00 nC/m 2 size 12{"Š1" "." "00" "nC/m" rSup { size 8{2} } } {} . (a) What is the electric field relative to ground at a height of 3.00 m? (b) Calculate the electric potential at this height. (c) Sketch electric field and equipotential lines for this scenario.

Got questions? Get instant answers now!

The lesser electric ray ( Narcine bancroftii ) maintains an incredible charge on its head and a charge equal in magnitude but opposite in sign on its tail ( [link] ). (a) Sketch the equipotential lines surrounding the ray. (b) Sketch the equipotentials when the ray is near a ship with a conducting surface. (c) How could this charge distribution be of use to the ray?

The figure shows a photo of a Narcine bancroftii, an electric ray that maintains a strong charge on its head and a charge equal in magnitude but opposite in sign on its tail.
Lesser electric ray ( Narcine bancroftii ) (credit: National Oceanic and Atmospheric Administration, NOAA's Fisheries Collection).
Got questions? Get instant answers now!

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask