<< Chapter < Page Chapter >> Page >
R tot = R 1 + R p . size 12{R rSub { size 8{"tot"} } =R rSub { size 8{1} } +R rSub { size 8{p} } } {}

First, we find R p size 12{R rSub { size 8{p} } } {} using the equation for resistors in parallel and entering known values:

1 R p = 1 R 2 + 1 R 3 = 1 6 . 00 Ω + 1 13 . 0 Ω = 0 . 2436 Ω . size 12{ { {1} over {R rSub { size 8{p} } } } = { {1} over {R rSub { size 8{2} } } } + { {1} over {R rSub { size 8{3} } } } = { {1} over {6 "." "00" %OMEGA } } + { {1} over {"13" "." 0 %OMEGA } } = { {0 "." "2436"} over { %OMEGA } } } {}

Inverting gives

R p = 1 0 . 2436 Ω = 4 . 11 Ω . size 12{R rSub { size 8{p} } = { {1} over {0 "." "2436"} } %OMEGA =4 "." "11" %OMEGA } {}

So the total resistance is

R tot = R 1 + R p = 1 . 00 Ω + 4 . 11 Ω = 5 . 11 Ω . size 12{R rSub { size 8{"tot"} } =R rSub { size 8{1} } +R rSub { size 8{p} } =1 "." "00" %OMEGA +4 "." "11 " %OMEGA =5 "." "11 " %OMEGA } {}

Discussion for (a)

The total resistance of this combination is intermediate between the pure series and pure parallel values ( 20.0 Ω and 0.804 Ω , respectively) found for the same resistors in the two previous examples.

Strategy and Solution for (b)

To find the IR size 12{ ital "IR"} {} drop in R 1 size 12{R rSub { size 8{1} } } {} , we note that the full current I size 12{I} {} flows through R 1 size 12{R rSub { size 8{1} } } {} . Thus its IR size 12{ ital "IR"} {} drop is

V 1 = IR 1 . size 12{V rSub { size 8{1} } = ital "IR" rSub { size 8{1} } } {}

We must find I size 12{I} {} before we can calculate V 1 size 12{V rSub { size 8{1} } } {} . The total current I size 12{I} {} is found using Ohm’s law for the circuit. That is,

I = V R tot = 12 . 0 V 5 . 11 Ω = 2 . 35 A . size 12{I= { {V} over {R rSub { size 8{"tot"} } } } = { {"12" "." 0" V"} over {5 "." "11 " %OMEGA } } =2 "." "35"" A"} {}

Entering this into the expression above, we get

V 1 = IR 1 = ( 2 . 35 A ) ( 1 . 00 Ω ) = 2 . 35 V . size 12{V rSub { size 8{1} } = ital "IR" rSub { size 8{1} } = \( 2 "." "35"" A" \) \( 1 "." "00" %OMEGA \) =2 "." "35"" V"} {}

Discussion for (b)

The voltage applied to R 2 size 12{R rSub { size 8{2} } } {} and R 3 size 12{R rSub { size 8{3} } } {} is less than the total voltage by an amount V 1 size 12{V rSub { size 8{1} } } {} . When wire resistance is large, it can significantly affect the operation of the devices represented by R 2 size 12{R rSub { size 8{2} } } {} and R 3 size 12{R rSub { size 8{3} } } {} .

Strategy and Solution for (c)

To find the current through R 2 size 12{R rSub { size 8{2} } } {} , we must first find the voltage applied to it. We call this voltage V p size 12{V rSub { size 8{p} } } {} , because it is applied to a parallel combination of resistors. The voltage applied to both R 2 size 12{R rSub { size 8{2} } } {} and R 3 size 12{R rSub { size 8{3} } } {} is reduced by the amount V 1 size 12{V rSub { size 8{1} } } {} , and so it is

V p = V V 1 = 12 . 0 V 2 . 35 V = 9 . 65 V . size 12{V rSub { size 8{p} } =V - V rSub { size 8{1} } ="12" "." 0" V" - 2 "." "35"" V"=9 "." "65"" V"} {}

Now the current I 2 size 12{I rSub { size 8{2} } } {} through resistance R 2 size 12{R rSub { size 8{2} } } {} is found using Ohm’s law:

I 2 = V p R 2 = 9 . 65 V 6 . 00 Ω = 1 . 61 A . size 12{I rSub { size 8{2} } = { {V rSub { size 8{p} } } over {R rSub { size 8{2} } } } = { {9 "." "65 V"} over {6 "." "00 " %OMEGA } } =1 "." "61"" A"} {}

Discussion for (c)

The current is less than the 2.00 A that flowed through R 2 size 12{R rSub { size 8{2} } } {} when it was connected in parallel to the battery in the previous parallel circuit example.

Strategy and Solution for (d)

The power dissipated by R 2 size 12{R rSub { size 8{2} } } {} is given by

P 2 = ( I 2 ) 2 R 2 = ( 1 . 61 A ) 2 ( 6 . 00 Ω ) = 15 . 5 W . size 12{P rSub { size 8{2} } = \( I rSub { size 8{2} } \) rSup { size 8{2} } R rSub { size 8{2} } = \( 1 "." "61"" A" \) rSup { size 8{2} } \( 6 "." "00" %OMEGA \) ="15" "." 5" W"} {}

Discussion for (d)

The power is less than the 24.0 W this resistor dissipated when connected in parallel to the 12.0-V source.

Applying the science practices: circuit construction kit (dc only)

Plan an experiment to analyze the effect on currents and potential differences due to rearrangement of resistors and variations in voltage sources. Your experimental investigation should include data collection for at least five different scenarios of rearranged resistors (i.e., several combinations of series and parallel) and three scenarios of different voltage sources.

Practical implications

One implication of this last example is that resistance in wires reduces the current and power delivered to a resistor. If wire resistance is relatively large, as in a worn (or a very long) extension cord, then this loss can be significant. If a large current is drawn, the IR size 12{ ital "IR"} {} drop in the wires can also be significant.

For example, when you are rummaging in the refrigerator and the motor comes on, the refrigerator light dims momentarily. Similarly, you can see the passenger compartment light dim when you start the engine of your car (although this may be due to resistance inside the battery itself).

What is happening in these high-current situations is illustrated in [link] . The device represented by R 3 size 12{R rSub { size 8{3} } } {} has a very low resistance, and so when it is switched on, a large current flows. This increased current causes a larger IR size 12{ ital "IR"} {} drop in the wires represented by R 1 size 12{R rSub { size 8{1} } } {} , reducing the voltage across the light bulb (which is R 2 size 12{R rSub { size 8{2} } } {} ), which then dims noticeably.

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 9

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask