<< Chapter < Page Chapter >> Page >

Making connections: squirt toy

There is a diagram of a blue syringe with black text and arrows showing measurements. From left to right are the following labels: A red arrow pointing toward the plunger shows 2.2 N above the arrow. In the center of the syringe is 1.0 cm with an arrow pointing up and down to the edges of the barrel. On the far right is 1.5mm pointing to two black lines running from the top and bottom of the syringe opening.

A horizontally oriented squirt toy contains a 1.0-cm-diameter barrel for the water. A 2.2-N force on the plunger forces water down the barrel and into a 1.5-mm-diameter opening at the end of the squirt gun. In addition to the force pushing on the plunger, pressure from the atmosphere is also present at both ends of the gun, pushing the plunger in and also pushing the water back in to the narrow opening at the other end. Assuming that the water is moving very slowly in the barrel, with what speed does it emerge from the toy?

Solution

First, find the cross-sectional areas for each part of the toy. The wider part is

A 1 =   π r 1 2 =   π ( d 1 2 ) 2 =   π ( 0.005 ) 2 = 7.85 × 10 5   m 2

Next, we will find the area of the narrower part of the toy:

A 2 =   π r 2 2 =   π ( d 2 2 ) 2 =   π ( 0.0015 ) 2 = 7.07 × 10 6   m 2

The pressure pushing on the barrel is equal to the sum of the pressure from the atmosphere ( 1.0 atm = 101 , 300 N/m 2 ) and the pressure created by the 2.2-N force.

P 1 = 101 , 300 +   ( Force A 1 )
P 1 = 101 , 300 + ( 2.2   N 7.85 x 10 5   m 2 ) = 129 , 300   N / m 2

The pressure pushing on the smaller end of the toy is simply the pressure from the atmosphere:

P 2 = 101 , 300   N / m 2

Since the gun is oriented horizontally ( h 1 = h 2 ), we can ignore the potential energy term in Bernoulli's equation, so the equation becomes:

P 1 +   1 2 ρ v 1 2 =   P 2 +   1 2 ρ v 2 2

The problem states that the water is moving very slowly in the barrel. That means we can make the approximation that v 1   0 , which we will justify mathematically.

129 , 300 + ( 0.500 ) ( 1000 ) ( 0 ) 2 = 101 , 300 + ( 0.500 ) ( 1000 ) v 2 2
v 2 2 = ( 129 , 300 101 , 300 ) 500  
v 2 2 = ( 129 , 300 101 , 300 ) 500  
v 2 =   7.5 m/s

How accurate is our assumption that the water velocity in the barrel is approximately zero? Check using the continuity equation:

v 1 = ( A 2 A 1 ) v 2 = ( 7.07 × 10 6 7.85 × 10 5 ) ( 7.5 ) = 0.17   m / s

How does the kinetic energy per unit volume term for water in the barrel fit into Bernoulli's equation?

129 , 300 + ( 0.500 ) ( 1000 ) ( 0.17 ) 2 =   101 , 300 + ( 0.500 ) ( 1000 ) ( 7.5 ) 2
129 , 300 + 14 = 101 , 300 + 28 , 000

As you can see, the kinetic energy per unit volume term for water in the barrel is very small (14) compared to the other terms (which are all at least 1000 times larger). Another way to look at this is to consider the ratio of the two terms that represent kinetic energy per unit volume:

K 2 K 1 =   1 2 ρ v 2 2 1 2 ρ v 1 2 =   v 2 2 v 1 2

Remember that from the continuity equation

v 2 v 1 =   A 2 A 1 =   π ( d 2 2 ) 2 π ( d 1 2 ) 2 =   d 2 2 d 1 2

Thus, the ratio of the kinetic energy per unit volume terms depends on the fourth power of the ratio of the diameters:

K 2 K 1 =   ( v 2 v 1 ) 2 =   ( d 2 2 d 1 2 ) 2 =   ( d 2 d 1 ) 4  

In this case, the diameter of the barrel ( d 2 ) is 6.7 times larger than the diameter of the opening at the end of the toy ( d 1 ), which makes the kinetic energy per unit volume term for water in the barrel ( 6.7 ) 4 2000 times smaller. We can usually neglect such small terms in addition or subtraction without a significant loss of accuracy.

Power in fluid flow

Power is the rate at which work is done or energy in any form is used or supplied. To see the relationship of power to fluid flow, consider Bernoulli's equation:

P + 1 2 ρv 2 + ρ gh = constant . size 12{P+ { {1} over {2} } ρv rSup { size 8{2} } +ρ ital "gh"="constant"} {}

All three terms have units of energy per unit volume, as discussed in the previous section. Now, considering units, if we multiply energy per unit volume by flow rate (volume per unit time), we get units of power. That is, ( E / V ) ( V / t ) = E / t size 12{ \( E/V \) \( V/t \) =E/t} {} . This means that if we multiply Bernoulli's equation by flow rate Q size 12{Q} {} , we get power. In equation form, this is

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask