<< Chapter < Page Chapter >> Page >

Learning objectives

By the end of this section, you will be able to:

  • Define heat as transfer of energy.

The information presented in this section supports the following AP® learning objectives and science practices:

  • 4.C.3.1 The student is able to make predictions about the direction of energy transfer due to temperature differences based on interactions at the microscopic level. (S.P. 6.1)

In Work, Energy, and Energy Resources , we defined work as force times distance and learned that work done on an object changes its kinetic energy. We also saw in Temperature, Kinetic Theory, and the Gas Laws that temperature is proportional to the (average) kinetic energy of atoms and molecules. We say that a thermal system has a certain internal energy: its internal energy is higher if the temperature is higher. If two objects at different temperatures are brought in contact with each other, energy is transferred from the hotter to the colder object until equilibrium is reached and the bodies reach thermal equilibrium (i.e., they are at the same temperature). No work is done by either object, because no force acts through a distance. The transfer of energy is caused by the temperature difference, and ceases once the temperatures are equal. These observations lead to the following definition of heat    : Heat is the spontaneous transfer of energy due to a temperature difference.

As noted in Temperature, Kinetic Theory, and the Gas Laws , heat is often confused with temperature. For example, we may say the heat was unbearable, when we actually mean that the temperature was high. Heat is a form of energy, whereas temperature is not. The misconception arises because we are sensitive to the flow of heat, rather than the temperature.

Owing to the fact that heat is a form of energy, it has the SI unit of joule (J). The calorie (cal) is a common unit of energy, defined as the energy needed to change the temperature of 1.00 g of water by 1 .00ºC —specifically, between 14 . 5ºC and 15 . 5ºC , since there is a slight temperature dependence. Perhaps the most common unit of heat is the kilocalorie    (kcal), which is the energy needed to change the temperature of 1.00 kg of water by 1 . 00ºC . Since mass is most often specified in kilograms, kilocalorie is commonly used. Food calories (given the notation Cal, and sometimes called “big calorie”) are actually kilocalories ( 1 kilocalorie = 1000 calories ), a fact not easily determined from package labeling.

In figure a there is a soft drink can and an ice cube placed on a surface at a distance from each other. The temperatures of the can and the ice cube are T one and T two, respectively, where T one is not equal to T two. In figure b, the soft drink can and the ice cube are placed in contact on the surface. The temperature of both is T prime.
In figure (a) the soft drink and the ice have different temperatures, T 1 and T 2 , and are not in thermal equilibrium. In figure (b), when the soft drink and ice are allowed to interact, energy is transferred until they reach the same temperature T , achieving equilibrium. Heat transfer occurs due to the difference in temperatures. In fact, since the soft drink and ice are both in contact with the surrounding air and bench, the equilibrium temperature will be the same for both.

Making connections: heat interpreted at the molecular level

What is observed as a change in temperature of two macroscopic objects in contact, such as a warm can of liquid and an ice cube, consists of the transfer of kinetic energy from particles (atoms or molecules) with greater kinetic energy to those with lower kinetic energy. In this respect, the process can be viewed in terms of collisions, as described through classical mechanics. Consider the particles in two substances at different temperatures. The particles of each substance move with a range of speeds that are distributed around a mean value, v ¯ . The temperature of each substance is defined in terms of the average kinetic energy of its particles, 1 2 m v ¯ 2 . The simplest mathematical description of this is for an ideal gas, and is given by the following equation:

T = 2 ( 1 2 m v ¯ 2 ) 3 k ,

where k is Boltzmann’s constant ( k = 1.38 × 10 23  J/K ). The equations for non-ideal gases, liquids, and solids are more complicated, but the general relation between the kinetic energies of the particles and the overall temperature of the substance still holds: the particles in the substance with the higher temperature have greater average kinetic energies than do the particles of a substance with a lower temperature.

When the two substances are in thermal contact, the particles of both substances can collide with each other. In the vast majority of collisions, a particle with greater kinetic energy will transfer some of its energy to a particle with lower kinetic energy. By giving up this energy, the average kinetic energy of this particle is reduced, and therefore, the temperature of the substance associated with that particle decreases slightly. Similarly, the average kinetic energy of the particle in the second substance increases through the collision, causing that substance’s temperature to increase by a minuscule amount. In this way, through a vast number of particle collisions, thermal energy is transferred macroscopically from the substance with greater temperature (that is, greater internal energy) to the substance with lower temperature (lower internal energy).

Macroscopically, heat appears to transfer thermal energy spontaneously in only one direction. When interpreted at the microscopic level, the transfer of kinetic energy between particles occurs in both directions. This is because some of the particles in the low-temperature substance have higher kinetic energies than the particles in the high-temperature substance, so that some of the energy transfer is in the direction from the lower temperature substance to the higher temperature substance. However, much more of the energy is transferred in the other direction. When thermal equilibrium is reached, the energy transfer in either direction is, on average, the same, so that there is no further change in the internal energy, or temperature, of either substance.

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask