<< Chapter < Page Chapter >> Page >

Learning objectives

By the end of this section you will be able to:

  • Define electric potential and electric potential energy.
  • Describe the relationship between potential difference and electrical potential energy.
  • Explain electron volt and its usage in submicroscopic processes.
  • Determine electric potential energy given potential difference and amount of charge.

The information presented in this section supports the following AP® learning objectives and science practices:

  • 2.C.1.1 The student is able to predict the direction and the magnitude of the force exerted on an object with an electric charge q placed in an electric field E using the mathematical model of the relation between an electric force and an electric field: F = q E ; a vector relation. (S.P. 6.4, 7.2)
  • 2.C.1.2 The student is able to calculate any one of the variables—electric force, electric charge, and electric field—at a point given the values and sign or direction of the other two quantities. (S.P. 2.2)
  • 5.B.2.1 The student is able to calculate the expected behavior of a system using the object model (i.e., by ignoring changes in internal structure) to analyze a situation. Then, when the model fails, the student can justify the use of conservation of energy principles to calculate the change in internal energy due to changes in internal structure because the object is actually a system. (S.P. 1.4, 2.1)
  • 5.B.3.1 The student is able to describe and make qualitative and/or quantitative predictions about everyday examples of systems with internal potential energy. (S.P. 2.2, 6.4, 7.2)
  • 5.B.3.2 The student is able to make quantitative calculations of the internal potential energy of a system from a description or diagram of that system. (S.P. 1.4, 2.2)
  • 5.B.3.3 The student is able to apply mathematical reasoning to create a description of the internal potential energy of a system from a description or diagram of the objects and interactions in that system. (S.P. 1.4, 2.2)
  • 5.B.4.1 The student is able to describe and make predictions about the internal energy of systems. (S.P. 6.4, 7.2)
  • 5.B.4.2 The student is able to calculate changes in kinetic energy and potential energy of a system, using information from representations of that system. (S.P. 1.4, 2.1, 2.2)

When a free positive charge q size 12{q} {} is accelerated by an electric field, such as shown in [link] , it is given kinetic energy. The process is analogous to an object being accelerated by a gravitational field. It is as if the charge is going down an electrical hill where its electric potential energy is converted to kinetic energy. Let us explore the work done on a charge q size 12{q} {} by the electric field in this process, so that we may develop a definition of electric potential energy.

A charge plus q moves from a positive to a negative sheet of charge. The change in the electric potential energy equals the change in kinetic energy. This is similar to the change from gravitational potential energy to kinetic energy when an object of mass m rolls downhill.
A charge accelerated by an electric field is analogous to a mass going down a hill. In both cases potential energy is converted to another form. Work is done by a force, but since this force is conservative, we can write W = –Δ PE size 12{W= - ?"PE"} {} .

The electrostatic or Coulomb force is conservative, which means that the work done on q size 12{q} {} is independent of the path taken. This is exactly analogous to the gravitational force in the absence of dissipative forces such as friction. When a force is conservative, it is possible to define a potential energy associated with the force, and it is usually easier to deal with the potential energy (because it depends only on position) than to calculate the work directly.

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask