<< Chapter < Page Chapter >> Page >

Index of refraction

n = c v size 12{n= { {c} over {v} } } {}

That is, n 1 size 12{n>= 1} {} . [link] gives the indices of refraction for some representative substances. The values are listed for a particular wavelength of light, because they vary slightly with wavelength. (This can have important effects, such as colors produced by a prism.) Note that for gases, n size 12{n} {} is close to 1.0. This seems reasonable, since atoms in gases are widely separated and light travels at c size 12{c} {} in the vacuum between atoms. It is common to take n = 1 size 12{n=1} {} for gases unless great precision is needed. Although the speed of light v size 12{v} {} in a medium varies considerably from its value c size 12{c} {} in a vacuum, it is still a large speed.

Index of refraction in various media
Medium n
Gases at 0ºC , 1 atm
Air 1.000293
Carbon dioxide 1.00045
Hydrogen 1.000139
Oxygen 1.000271
Liquids at 20ºC
Benzene 1.501
Carbon disulfide 1.628
Carbon tetrachloride 1.461
Ethanol 1.361
Glycerine 1.473
Water, fresh 1.333
Solids at 20ºC
Diamond 2.419
Fluorite 1.434
Glass, crown 1.52
Glass, flint 1.66
Ice at 20ºC 1.309
Polystyrene 1.49
Plexiglas 1.51
Quartz, crystalline 1.544
Quartz, fused 1.458
Sodium chloride 1.544
Zircon 1.923

Speed of light in matter

Calculate the speed of light in zircon, a material used in jewelry to imitate diamond.

Strategy

The speed of light in a material, v size 12{v} {} , can be calculated from the index of refraction n size 12{n} {} of the material using the equation n = c / v size 12{n=c/2} {} .

Solution

The equation for index of refraction states that n = c / v size 12{n=c/v} {} . Rearranging this to determine v size 12{v} {} gives

v = c n . size 12{v= { {c} over {n} } } {}

The index of refraction for zircon is given as 1.923 in [link] , and c size 12{c} {} is given in the equation for speed of light. Entering these values in the last expression gives

v = 3 . 00 × 10 8 m/s 1 . 923 = 1.56 × 10 8 m/s . alignl { stack { size 12{v= { {3 "." "00"´"10" rSup { size 8{8} } " m/s"} over {1 "." "923"} } } {} #=1 "." "56"´"10" rSup { size 8{8} } " m/s" "." {} } } {}

Discussion

This speed is slightly larger than half the speed of light in a vacuum and is still high compared with speeds we normally experience. The only substance listed in [link] that has a greater index of refraction than zircon is diamond. We shall see later that the large index of refraction for zircon makes it sparkle more than glass, but less than diamond.

Got questions? Get instant answers now!

Law of refraction

[link] shows how a ray of light changes direction when it passes from one medium to another. As before, the angles are measured relative to a perpendicular to the surface at the point where the light ray crosses it. (Some of the incident light will be reflected from the surface, but for now we will concentrate on the light that is transmitted.) The change in direction of the light ray depends on how the speed of light changes. The change in the speed of light is related to the indices of refraction of the media involved. In the situations shown in [link] , medium 2 has a greater index of refraction than medium 1. This means that the speed of light is less in medium 2 than in medium 1. Note that as shown in [link] (a), the direction of the ray moves closer to the perpendicular when it slows down. Conversely, as shown in [link] (b), the direction of the ray moves away from the perpendicular when it speeds up. The path is exactly reversible. In both cases, you can imagine what happens by thinking about pushing a lawn mower from a footpath onto grass, and vice versa. Going from the footpath to grass, the front wheels are slowed and pulled to the side as shown. This is the same change in direction as for light when it goes from a fast medium to a slow one. When going from the grass to the footpath, the front wheels can move faster and the mower changes direction as shown. This, too, is the same change in direction as for light going from slow to fast.

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask