<< Chapter < Page Chapter >> Page >

How does it work?

To understand how these quark substructures work, let us specifically examine the proton, neutron, and the two pions pictured in [link] before moving on to more general considerations. First, the proton p is composed of the three quarks uud , so that its total charge is + 2 3 q e + 2 3 q e 1 3 q e = q e size 12{+ left ( { {2} over {3} } right )q rSub { size 8{e} } + left ( { {2} over {3} } right )q rSub { size 8{e} } - left ( { {1} over {3} } right )q rSub { size 8{e} } =q rSub { size 8{e} } } {} , as expected. With the spins aligned as in the figure, the proton's intrinsic spin is + 1 2 + 1 2 1 2 = 1 2 size 12{+ left ( { {1} over {2} } right )+ left ( { {1} over {2} } right ) - left ( { {1} over {2} } right )= left ( { {1} over {2} } right )} {} , also as expected. Note that the spins of the up quarks are aligned, so that they would be in the same state except that they have different colors (another quantum number to be elaborated upon a little later). Quarks obey the Pauli exclusion principle. Similar comments apply to the neutron n , which is composed of the three quarks udd . Note also that the neutron is made of charges that add to zero but move internally, producing its well-known magnetic moment. When the neutron β size 12{β rSup { size 8{ - {}} } } {} decays, it does so by changing the flavor of one of its quarks. Writing neutron β size 12{β rSup { size 8{ - {}} } } {} decay in terms of quarks,

n p + β + v - e size 12{n rightarrow p+β rSup { size 8{ - {}} } + { bar {v}} rSub { size 8{e} } } {}   becomes  udd uud + β + v - e size 12{ ital "udd" rightarrow ital "uud"+β rSup { size 8{ - {}} } + { bar {v}} rSub { size 8{e} } } {} .

We see that this is equivalent to a down quark changing flavor to become an up quark:

d u + β + v - e size 12{d rightarrow u+β rSup { size 8{ - {}} } + { bar {v}} rSub { size 8{e} } } {}

Quarks and antiquarks The lower of the ± size 12{ +- {}} {} symbols are the values for antiquarks.
Name Symbol Antiparticle Spin Charge B size 12{B} {} B size 12{B} {} is baryon number, S is strangeness, c size 12{c} {} is charm, b size 12{b} {} is bottomness, t size 12{t} {} is topness. S size 12{S} {} c size 12{c} {} b size 12{b} {} t size 12{t} {} Mass ( GeV / c 2 ) Values are approximate, are not directly observable, and vary with model.
Up u size 12{u} {} u - size 12{ { bar {u}}} {} 1/2 ± 2 3 q e size 12{ +- { {2} over {3} } q rSub { size 8{e} } } {} ± 1 3 size 12{ +- { {1} over {3} } } {} 0 0 0 0 0.005
Down d size 12{d} {} d - size 12{ { bar {d}}} {} 1/2 1 3 q e size 12{ -+ { {1} over {3} } q rSub { size 8{e} } } {} ± 1 3 size 12{ +- { {1} over {3} } } {} 0 0 0 0 0.008
Strange s size 12{s} {} s - size 12{ { bar {s}}} {} 1/2 1 3 q e size 12{ -+ { {1} over {3} } q rSub { size 8{e} } } {} ± 1 3 size 12{ +- { {1} over {3} } } {} 1 size 12{ -+ 1} {} 0 0 0 0.50
Charmed c size 12{c} {} c - size 12{ { bar {c}}} {} 1/2 ± 2 3 q e size 12{ +- { {2} over {3} } q rSub { size 8{e} } } {} ± 1 3 size 12{ +- { {1} over {3} } } {} 0 ± 1 size 12{ +- 1} {} 0 0 1.6
Bottom b size 12{b} {} b - size 12{ { bar {b}}} {} 1/2 1 3 q e size 12{ -+ { {1} over {3} } q rSub { size 8{e} } } {} ± 1 3 size 12{ +- { {1} over {3} } } {} 0 0 1 size 12{ -+ 1} {} 0 5
Top t size 12{t} {} t - size 12{ { bar {t}}} {} 1/2 ± 2 3 q e size 12{ +- { {2} over {3} } q rSub { size 8{e} } } {} ± 1 3 size 12{ +- { {1} over {3} } } {} 0 0 0 ± 1 size 12{ +- 1} {} 173
Quark composition of selected hadrons These two mesons are different mixtures, but each is its own antiparticle, as indicated by its quark composition.
Particle Quark Composition
Mesons
π + size 12{π rSup { size 8{+{}} } } {} u d - size 12{u { bar {d}}} {}
π size 12{π rSup { size 8{ - {}} } } {} u - d size 12{ { bar {u}}d} {}
π 0 size 12{π rSup { size 8{0} } } {} u u - size 12{u { bar {u}}} {} , d d - size 12{d { bar {d}}} {} mixture These two mesons are different mixtures, but each is its own antiparticle, as indicated by its quark composition.
η 0 size 12{η rSup { size 8{0} } } {} u u - size 12{u { bar {u}}} {} , d d - size 12{d { bar {d}}} {} mixture These two mesons are different mixtures, but each is its own antiparticle, as indicated by its quark composition.
K 0 size 12{K rSup { size 8{0} } } {} d s - size 12{d { bar {s}}} {}
K - 0 size 12{ { bar {K}} rSup { size 8{0} } } {} d - s size 12{ { bar {d}}s} {}
K + size 12{K rSup { size 8{+{}} } } {} u s - size 12{u { bar {s}}} {}
K size 12{K rSup { size 8{ - {}} } } {} u - s size 12{ { bar {u}}s} {}
J / ψ size 12{J/ψ} {} c c - size 12{c { bar {c}}} {}
ϒ b b - size 12{b { bar {b}}} {}
Baryons Antibaryons have the antiquarks of their counterparts. The antiproton p - size 12{ { bar {p}}} {} is u - u - d - size 12{ { bar {u}} { bar {u}} { bar {d}}} {} , for example. , Baryons composed of the same quarks are different states of the same particle. For example, the Δ + size 12{Δ rSup { size 8{+{}} } } {} is an excited state of the proton.
p size 12{p} {} uud size 12{ ital "uud"} {}
n size 12{n} {} udd size 12{ ital "uud"} {}
Δ 0 size 12{Δ rSup { size 8{0} } } {} udd size 12{ ital "uud"} {}
Δ + size 12{Δ rSup { size 8{+{}} } } {} uud size 12{ ital "uud"} {}
Δ size 12{Δ rSup { size 8{ - {}} } } {} ddd size 12{ ital "ddd"} {}
Δ ++ size 12{Δ rSup { size 8{"++"} } } {} uuu size 12{ ital "uuu"} {}
Λ 0 size 12{Λ rSup { size 8{0} } } {} uds size 12{ ital "uds"} {}
Σ 0 size 12{Σ rSup { size 8{0} } } {} uds size 12{ ital "uds"} {}
Σ + size 12{Σ rSup { size 8{+{}} } } {} uus size 12{ ital "uus"} {}
Σ size 12{Σ rSup { size 8{ - {}} } } {} dds size 12{ ital "dds"} {}
Ξ 0 size 12{Ξ rSup { size 8{0} } } {} uss size 12{ ital "uss"} {}
Ξ size 12{Ξ rSup { size 8{ - {}} } } {} dss size 12{ ital "dss"} {}
Ω size 12{ %OMEGA rSup { size 8{ - {}} } } {} sss size 12{ ital "sss"} {}

This is an example of the general fact that the weak nuclear force can change the flavor of a quark . By general, we mean that any quark can be converted to any other (change flavor) by the weak nuclear force. Not only can we get d u size 12{d rightarrow u} {} , we can also get u d size 12{u rightarrow d} {} . Furthermore, the strange quark can be changed by the weak force, too, making s u size 12{s rightarrow u} {} and s d size 12{s rightarrow d} {} possible. This explains the violation of the conservation of strangeness by the weak force noted in the preceding section. Another general fact is that the strong nuclear force cannot change the flavor of a quark.

Again, from [link] , we see that the π + size 12{π rSup { size 8{+{}} } } {} meson (one of the three pions) is composed of an up quark plus an antidown quark, or u d - size 12{u { bar {d}}} {} . Its total charge is thus + 2 3 q e + 1 3 q e = q e size 12{+ left ( { {2} over {3} } right )q rSub { size 8{e} } + left ( { {1} over {3} } right )q rSub { size 8{e} } =q rSub { size 8{e} } } {} , as expected. Its baryon number is 0, since it has a quark and an antiquark with baryon numbers + 1 3 1 3 = 0 size 12{+ left ( { {1} over {3} } right ) - left ( { {1} over {3} } right )=0} {} . The π + size 12{π rSup { size 8{+{}} } } {} half-life is relatively long since, although it is composed of matter and antimatter, the quarks are different flavors and the weak force should cause the decay by changing the flavor of one into that of the other. The spins of the u size 12{u} {} and d - size 12{ { bar {d}}} {} quarks are antiparallel, enabling the pion to have spin zero, as observed experimentally. Finally, the π size 12{π rSup { size 8{ - {}} } } {} meson shown in [link] is the antiparticle of the π + size 12{π rSup { size 8{+{}} } } {} meson, and it is composed of the corresponding quark antiparticles. That is, the π + size 12{π rSup { size 8{+{}} } } {} meson is u d - size 12{u { bar {d}}} {} , while the π size 12{π rSup { size 8{ - {}} } } {} meson is u - d size 12{ { bar {u}}d} {} . These two pions annihilate each other quickly, because their constituent quarks are each other's antiparticles.

Questions & Answers

how did you get 1640
Noor Reply
If auger is pair are the roots of equation x2+5x-3=0
Peter Reply
Wayne and Dennis like to ride the bike path from Riverside Park to the beach. Dennis’s speed is seven miles per hour faster than Wayne’s speed, so it takes Wayne 2 hours to ride to the beach while it takes Dennis 1.5 hours for the ride. Find the speed of both bikers.
MATTHEW Reply
420
Sharon
from theory: distance [miles] = speed [mph] × time [hours] info #1 speed_Dennis × 1.5 = speed_Wayne × 2 => speed_Wayne = 0.75 × speed_Dennis (i) info #2 speed_Dennis = speed_Wayne + 7 [mph] (ii) use (i) in (ii) => [...] speed_Dennis = 28 mph speed_Wayne = 21 mph
George
Let W be Wayne's speed in miles per hour and D be Dennis's speed in miles per hour. We know that W + 7 = D and W * 2 = D * 1.5. Substituting the first equation into the second: W * 2 = (W + 7) * 1.5 W * 2 = W * 1.5 + 7 * 1.5 0.5 * W = 7 * 1.5 W = 7 * 3 or 21 W is 21 D = W + 7 D = 21 + 7 D = 28
Salma
Devon is 32 32​​ years older than his son, Milan. The sum of both their ages is 54 54​. Using the variables d d​ and m m​ to represent the ages of Devon and Milan, respectively, write a system of equations to describe this situation. Enter the equations below, separated by a comma.
Aaron Reply
find product (-6m+6) ( 3m²+4m-3)
SIMRAN Reply
-42m²+60m-18
Salma
what is the solution
bill
how did you arrive at this answer?
bill
-24m+3+3mÁ^2
Susan
i really want to learn
Amira
I only got 42 the rest i don't know how to solve it. Please i need help from anyone to help me improve my solving mathematics please
Amira
Hw did u arrive to this answer.
Aphelele
hi
Bajemah
-6m(3mA²+4m-3)+6(3mA²+4m-3) =-18m²A²-24m²+18m+18mA²+24m-18 Rearrange like items -18m²A²-24m²+42m+18A²-18
Salma
complete the table of valuesfor each given equatio then graph. 1.x+2y=3
Jovelyn Reply
x=3-2y
Salma
y=x+3/2
Salma
Hi
Enock
given that (7x-5):(2+4x)=8:7find the value of x
Nandala
3x-12y=18
Kelvin
please why isn't that the 0is in ten thousand place
Grace Reply
please why is it that the 0is in the place of ten thousand
Grace
Send the example to me here and let me see
Stephen
A meditation garden is in the shape of a right triangle, with one leg 7 feet. The length of the hypotenuse is one more than the length of one of the other legs. Find the lengths of the hypotenuse and the other leg
Marry Reply
how far
Abubakar
cool u
Enock
state in which quadrant or on which axis each of the following angles given measure. in standard position would lie 89°
Abegail Reply
hello
BenJay
hi
Method
I am eliacin, I need your help in maths
Rood
how can I help
Sir
hmm can we speak here?
Amoon
however, may I ask you some questions about Algarba?
Amoon
hi
Enock
what the last part of the problem mean?
Roger
The Jones family took a 15 mile canoe ride down the Indian River in three hours. After lunch, the return trip back up the river took five hours. Find the rate, in mph, of the canoe in still water and the rate of the current.
cameron Reply
Shakir works at a computer store. His weekly pay will be either a fixed amount, $925, or $500 plus 12% of his total sales. How much should his total sales be for his variable pay option to exceed the fixed amount of $925.
mahnoor Reply
I'm guessing, but it's somewhere around $4335.00 I think
Lewis
12% of sales will need to exceed 925 - 500, or 425 to exceed fixed amount option. What amount of sales does that equal? 425 ÷ (12÷100) = 3541.67. So the answer is sales greater than 3541.67. Check: Sales = 3542 Commission 12%=425.04 Pay = 500 + 425.04 = 925.04. 925.04 > 925.00
Munster
difference between rational and irrational numbers
Arundhati Reply
When traveling to Great Britain, Bethany exchanged $602 US dollars into £515 British pounds. How many pounds did she receive for each US dollar?
Jakoiya Reply
how to reduced echelon form
Solomon Reply
Jazmine trained for 3 hours on Saturday. She ran 8 miles and then biked 24 miles. Her biking speed is 4 mph faster than her running speed. What is her running speed?
Zack Reply
d=r×t the equation would be 8/r+24/r+4=3 worked out
Sheirtina
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask