<< Chapter < Page Chapter >> Page >

Section summary

  • An artifact of the second law of thermodynamics is the ability to heat an interior space using a heat pump. Heat pumps compress cold ambient air and, in so doing, heat it to room temperature without violation of conservation principles.
  • To calculate the heat pump's coefficient of performance, use the equation COP hp = Q h W size 12{ ital "COP" rSub { size 8{"hp"} } = { {Q rSub { size 8{h} } } over {W} } } {} .
  • A refrigerator is a heat pump; it takes warm ambient air and expands it to chill it.

Conceptual questions

Explain why heat pumps do not work as well in very cold climates as they do in milder ones. Is the same true of refrigerators?

Got questions? Get instant answers now!

In some Northern European nations, homes are being built without heating systems of any type. They are very well insulated and are kept warm by the body heat of the residents. However, when the residents are not at home, it is still warm in these houses. What is a possible explanation?

Got questions? Get instant answers now!

Why do refrigerators, air conditioners, and heat pumps operate most cost-effectively for cycles with a small difference between T h size 12{T rSub { size 8{h} } } {} and T c size 12{T rSub { size 8{c} } } {} ? (Note that the temperatures of the cycle employed are crucial to its COP size 12{ ital "COP"} {} .)

Got questions? Get instant answers now!

Grocery store managers contend that there is less total energy consumption in the summer if the store is kept at a low temperature. Make arguments to support or refute this claim, taking into account that there are numerous refrigerators and freezers in the store.

Got questions? Get instant answers now!

Can you cool a kitchen by leaving the refrigerator door open?

Got questions? Get instant answers now!

Problem exercises

What is the coefficient of performance of an ideal heat pump that has heat transfer from a cold temperature of 25 . 0 º C size 12{-"25" "." 0°C} {} to a hot temperature of 40 . 0 º C size 12{"40" "." 0°C} {} ?

4.82

Got questions? Get instant answers now!

Suppose you have an ideal refrigerator that cools an environment at 20 . 0 º C size 12{-"20" "." 0°C} {} and has heat transfer to another environment at 50 . 0 º C size 12{"50" "." 0°C} {} . What is its coefficient of performance?

Got questions? Get instant answers now!

What is the best coefficient of performance possible for a hypothetical refrigerator that could make liquid nitrogen at 200 º C size 12{-"200"°C} {} and has heat transfer to the environment at 35 . 0 º C size 12{"35" "." 0°C} {} ?

0.311

Got questions? Get instant answers now!

In a very mild winter climate, a heat pump has heat transfer from an environment at 5 . 00 º C size 12{5 "." "00"°C} {} to one at 35 . 0 º C size 12{"35" "." 0°C} {} . What is the best possible coefficient of performance for these temperatures? Explicitly show how you follow the steps in the Problem-Solving Strategies for Thermodynamics .

Got questions? Get instant answers now!

(a) What is the best coefficient of performance for a heat pump that has a hot reservoir temperature of 50 . 0 º C and a cold reservoir temperature of 20 .0ºC ? (b) How much heat transfer occurs into the warm environment if 3 .60 × 10 7 J of work ( 10 . 0 kW h ) is put into it? (c) If the cost of this work input is 10.0 cents/kW h , how does its cost compare with the direct heat transfer achieved by burning natural gas at a cost of 85.0 cents per therm. (A therm is a common unit of energy for natural gas and equals 1 . 055 × 10 8 J size 12{1 "." "055"´"10" rSup { size 8{8} } " J"} {} .)

(a) 4.61

(b) 1 . 66 × 10 8 J or 3 . 97 × 10 4 kcal {1 "." "66" times "10" rSup { {8} } " J"`"or 3" "." "97" times "10" rSup { {4} } `"kcal"} {}

(c) To transfer 1 . 66 × 10 8 J {1 "." "66" times "10" rSup { {8} } " J"} {} , heat pump costs $1.00, natural gas costs $1.34.

Got questions? Get instant answers now!

(a) What is the best coefficient of performance for a refrigerator that cools an environment at 30 . 0 º C size 12{-"30" "." 0°C} {} and has heat transfer to another environment at 45 . C size 12{"45" "." 0°C} {} ? (b) How much work in joules must be done for a heat transfer of 4186 kJ from the cold environment? (c) What is the cost of doing this if the work costs 10.0 cents per 3 . 60 × 10 6 J size 12{3 "." "60"´"10" rSup { size 8{6} } " J"} {} (a kilowatt-hour)? (d) How many kJ of heat transfer occurs into the warm environment? (e) Discuss what type of refrigerator might operate between these temperatures.

Got questions? Get instant answers now!

Suppose you want to operate an ideal refrigerator with a cold temperature of 10 . C size 12{-"10" "." 0°C} {} , and you would like it to have a coefficient of performance of 7.00. What is the hot reservoir temperature for such a refrigerator?

27.6ºC

Got questions? Get instant answers now!

An ideal heat pump is being considered for use in heating an environment with a temperature of 22 . 0 º C size 12{"22" "." 0°C} {} . What is the cold reservoir temperature if the pump is to have a coefficient of performance of 12.0?

Got questions? Get instant answers now!

A 4-ton air conditioner removes 5 . 06 × 10 7 J (48,000 British thermal units) from a cold environment in 1.00 h. (a) What energy input in joules is necessary to do this if the air conditioner has an energy efficiency rating ( EER ) of 12.0? (b) What is the cost of doing this if the work costs 10.0 cents per 3 . 60 × 10 6 J size 12{3 "." "60"´"10" rSup { size 8{6} } " J"} {} (one kilowatt-hour)? (c) Discuss whether this cost seems realistic. Note that the energy efficiency rating ( EER size 12{ ital "EER"} {} ) of an air conditioner or refrigerator is defined to be the number of British thermal units of heat transfer from a cold environment per hour divided by the watts of power input.

(a) 1 . 44 × 10 7 J {1 "." "44" times "10" rSup { {7} } "J"} {}

(b) 40 cents

(c) This cost seems quite realistic; it says that running an air conditioner all day would cost $9.59 (if it ran continuously).

Got questions? Get instant answers now!

Show that the coefficients of performance of refrigerators and heat pumps are related by COP ref = COP hp 1 size 12{ ital "COP" rSub { size 8{"ref"} } = ital "COP" rSub { size 8{"hp"} } -1} {} .

Start with the definitions of the COP size 12{ ital "COP"} {} s and the conservation of energy relationship between Q h size 12{Q rSub { size 8{h} } } {} , Q c size 12{Q rSub { size 8{c} } } {} , and W size 12{W} {} .

Got questions? Get instant answers now!

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask