<< Chapter < Page Chapter >> Page >

Explain what phosphorescence is and how it differs from fluorescence. Which process typically takes longer and why?

Got questions? Get instant answers now!

An electron is excited from the ground state of an atom (energy level 1) into a highly excited state (energy level 8). Which of the following electron behaviors represents the fluorescence effect by the atom?

  1. The electron remains at level 8 for a very long time, then transitions up to level 9.
  2. The electron transitions directly down from level 8 to level 1.
  3. The electron transitions from level 8 to level 1 and then returns quickly to level 8.
  4. The electron transitions from level 8 to level 6, then to level 5, then to level 3, then to level 1.

(d)

Got questions? Get instant answers now!

Describe the process of fluorescence in terms of the emission of photons as electron transitions between energy states. Specifically, explain how this process differs from ordinary atomic emission.

Got questions? Get instant answers now!

Section summary

  • An important atomic process is fluorescence, defined to be any process in which an atom or molecule is excited by absorbing a photon of a given energy and de-excited by emitting a photon of a lower energy.
  • Some states live much longer than others and are termed metastable.
  • Phosphorescence is the de-excitation of a metastable state.
  • Lasers produce coherent single-wavelength EM radiation by stimulated emission, in which a metastable state is stimulated to decay.
  • Lasing requires a population inversion, in which a majority of the atoms or molecules are in their metastable state.

Conceptual questions

How do the allowed orbits for electrons in atoms differ from the allowed orbits for planets around the sun? Explain how the correspondence principle applies here.

Got questions? Get instant answers now!

Atomic and molecular spectra are discrete. What does discrete mean, and how are discrete spectra related to the quantization of energy and electron orbits in atoms and molecules?

Got questions? Get instant answers now!

Hydrogen gas can only absorb EM radiation that has an energy corresponding to a transition in the atom, just as it can only emit these discrete energies. When a spectrum is taken of the solar corona, in which a broad range of EM wavelengths are passed through very hot hydrogen gas, the absorption spectrum shows all the features of the emission spectrum. But when such EM radiation passes through room-temperature hydrogen gas, only the Lyman series is absorbed. Explain the difference.

Got questions? Get instant answers now!

Lasers are used to burn and read CDs. Explain why a laser that emits blue light would be capable of burning and reading more information than one that emits infrared.

Got questions? Get instant answers now!

The coating on the inside of fluorescent light tubes absorbs ultraviolet light and subsequently emits visible light. An inventor claims that he is able to do the reverse process. Is the inventor’s claim possible?

Got questions? Get instant answers now!

What is the difference between fluorescence and phosphorescence?

Got questions? Get instant answers now!

How can you tell that a hologram is a true three-dimensional image and that those in 3-D movies are not?

Got questions? Get instant answers now!

Problem exercises

[link] shows the energy-level diagram for neon. (a) Verify that the energy of the photon emitted when neon goes from its metastable state to the one immediately below is equal to 1.96 eV. (b) Show that the wavelength of this radiation is 633 nm. (c) What wavelength is emitted when the neon makes a direct transition to its ground state?

(a) 1.96 eV

(b) ( 1240 eV·nm ) / ( 1 . 96 eV ) = 633 nm size 12{ \( "1240 eV·nm" \) / \( 1 "." "96 eV" \) =" 633 nm"} {}

(c) 60.0 nm

Got questions? Get instant answers now!

A helium-neon laser is pumped by electric discharge. What wavelength electromagnetic radiation would be needed to pump it? See [link] for energy-level information.

Got questions? Get instant answers now!

Ruby lasers have chromium atoms doped in an aluminum oxide crystal. The energy level diagram for chromium in a ruby is shown in [link] . What wavelength is emitted by a ruby laser?

The figure shows energy levels of chromium atoms in an aluminum oxide crystal. Ground state is at zero point zero electron volts, first metastable state is at one point seventy nine electron volts, second state is at two point three electron volts, and the third state is at three point zero electron volts.
Chromium atoms in an aluminum oxide crystal have these energy levels, one of which is metastable. This is the basis of a ruby laser. Visible light can pump the atom into an excited state above the metastable state to achieve a population inversion.

693 nm

Got questions? Get instant answers now!

(a) What energy photons can pump chromium atoms in a ruby laser from the ground state to its second and third excited states? (b) What are the wavelengths of these photons? Verify that they are in the visible part of the spectrum.

Got questions? Get instant answers now!

Some of the most powerful lasers are based on the energy levels of neodymium in solids, such as glass, as shown in [link] . (a) What average wavelength light can pump the neodymium into the levels above its metastable state? (b) Verify that the 1.17 eV transition produces 1 . 06 μm size 12{1 "." "06-μm"} {} radiation.

The figure shows different energy levels of neodymium atoms in glass. The ground state is at zero electron volts, first state is at zero point five zero electron volts, the metastable second state is at one point sixty seven electron volts, and the group state levels above metastable second are at two point one electron volts. The photons release one point seventeen electron volts at wavelength of one point zero six micro meters while coming from the metastable second state to first state.
Neodymium atoms in glass have these energy levels, one of which is metastable. The group of levels above the metastable state is convenient for achieving a population inversion, since photons of many different energies can be absorbed by atoms in the ground state.

(a) 590 nm

(b) ( 1240 eV·nm ) / ( 1 . 17 eV ) = 1.06 μm size 12{ \( "1240 eV·nm" \) / \( 1 "." "96 eV" \) =" 633 nm"} {}

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask