<< Chapter < Page Chapter >> Page >

Inelastic collision

An inelastic collision is one in which the internal kinetic energy changes (it is not conserved).

[link] shows an example of an inelastic collision. Two objects that have equal masses head toward one another at equal speeds and then stick together. Their total internal kinetic energy is initially 1 2 m v 2 + 1 2 m v 2 = m v 2 . The two objects come to rest after sticking together, conserving momentum. But the internal kinetic energy is zero after the collision. A collision in which the objects stick together is sometimes called a perfectly inelastic collision    because it reduces internal kinetic energy more than does any other type of inelastic collision. In fact, such a collision reduces internal kinetic energy to the minimum it can have while still conserving momentum.

Perfectly inelastic collision

A collision in which the objects stick together is sometimes called “perfectly inelastic.”

The system of interest contains two equal masses with mass m. One moves to the right and the other moves to the left with the same magnitude of velocity represented by V. Due to this their total momentum and net force remains zero. The internal kinetic energy is mv power 2. After collision the system of interest has no net velocity, no total momentum and no internal kinetic energy. This is true for all inelastic collisions.
An inelastic one-dimensional two-object collision. Momentum is conserved, but internal kinetic energy is not conserved. (a) Two objects of equal mass initially head directly toward one another at the same speed. (b) The objects stick together (a perfectly inelastic collision), and so their final velocity is zero. The internal kinetic energy of the system changes in any inelastic collision and is reduced to zero in this example.

Calculating velocity and change in kinetic energy: inelastic collision of a puck and a goalie

(a) Find the recoil velocity of a 70.0-kg ice hockey goalie, originally at rest, who catches a 0.150-kg hockey puck slapped at him at a velocity of 35.0 m/s. (b) How much kinetic energy is lost during the collision? Assume friction between the ice and the puck-goalie system is negligible. (See [link] )

The first picture shows an ice hockey goal keeper of mass m 2 bent on his knees, turning to the left on a frictionless ice surface with zero velocity and a hockey puck of mass m 1 and velocity V 1 moving toward the right. The total momentum of the system is p 1 which is the momentum of the puck and the net force is zero. The second picture shows the goalie to catch the puck. The puck moves with velocity V 1prime and the goalie with velocity V 2 prime and their magnitudes are equal. The momentum of the puck is p 1 prime and the goalie is p 2 prime. The total momentum remains same as before collision. But the kinetic energy after collision is lesser than the kinetic energy before collision. This is true for inelastic collisions.
An ice hockey goalie catches a hockey puck and recoils backward. The initial kinetic energy of the puck is almost entirely converted to thermal energy and sound in this inelastic collision.

Strategy

Momentum is conserved because the net external force on the puck-goalie system is zero. We can thus use conservation of momentum to find the final velocity of the puck and goalie system. Note that the initial velocity of the goalie is zero and that the final velocity of the puck and goalie are the same. Once the final velocity is found, the kinetic energies can be calculated before and after the collision and compared as requested.

Solution for (a)

Momentum is conserved because the net external force on the puck-goalie system is zero.

Conservation of momentum is

p 1 + p 2 = p 1 + p 2 size 12{p rSub { size 8{1} } +p rSub { size 8{2} } = { {p}} sup { ' } rSub { size 8{1} } + { {p}} sup { ' } rSub { size 8{2} } } {}

or

m 1 v 1 + m 2 v 2 = m 1 v 1 + m 2 v 2 . size 12{m rSub { size 8{1} } v rSub { size 8{1} } +m rSub { size 8{2} } v rSub { size 8{2} } =m rSub { size 8{1} } { {v}} sup { ' } rSub { size 8{1} } +m rSub { size 8{2} } { {v}} sup { ' } rSub { size 8{2} } } {}

Because the goalie is initially at rest, we know v 2 = 0 size 12{v rSub { size 8{2} } =0} {} . Because the goalie catches the puck, the final velocities are equal, or v 1 = v 2 = v size 12{ { {v}} sup { ' } rSub { size 8{1} } = { {v}} sup { ' } rSub { size 8{2} } =v'} {} . Thus, the conservation of momentum equation simplifies to

m 1 v 1 = m 1 + m 2 v . size 12{m rSub { size 8{1} } v rSub { size 8{1} } = left (m rSub { size 8{1} } +m rSub { size 8{2} } right )v'} {}

Solving for v size 12{v'} {} yields

v = m 1 m 1 + m 2 v 1 . size 12{v'= { {m rSub { size 8{1} } } over {m rSub { size 8{1} } +m rSub { size 8{2} } } } v rSub { size 8{1} } } {}

Entering known values in this equation, we get

v = 0.150 kg 70.0 kg + 0.150 kg 35 .0 m/s = 7 . 48 × 10 2 m/s . size 12{v'= left ( { {0 "." "150"`"kg"} over {"70" "." 0`"kg"+0 "." "150"`"kg"} } right ) left ("35" "." 0`"m/s" right )=7 "." "48" times "10" rSup { size 8{ - 2} } `"m/s" "." } {}

Discussion for (a)

This recoil velocity is small and in the same direction as the puck’s original velocity, as we might expect.

Solution for (b)

Before the collision, the internal kinetic energy KE int size 12{"KE" rSub { size 8{"int"} } } {} of the system is that of the hockey puck, because the goalie is initially at rest. Therefore, KE int size 12{"KE" rSub { size 8{"int"} } } {} is initially

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask