<< Chapter < Page Chapter >> Page >

A magnetic circuit with an air gap is shown in Fig.1.2. Air gaps are present for moving elements. The air gap length is sufficiently small. φ size 12{φ} {} : the flux in the magnetic circuit.

Figure 1.2Magnetic circuit with air gap.

B c = φ A c size 12{B rSub { size 8{c} } = { {φ} over {A rSub { size 8{c} } } } } {} (1.7)

B g = φ A g size 12{B rSub { size 8{g} } = { {φ} over {A rSub { size 8{g} } } } } {} (1.8)

F = H c l c + H g l g size 12{F=H rSub { size 8{c} } l rSub { size 8{c} } +H rSub { size 8{g} } l rSub { size 8{g} } } {} (1.9)

F = B c μ l c + B g μ 0 g size 12{F= { {B rSub { size 8{c} } } over {μ} } l rSub { size 8{c} } + { {B rSub { size 8{g} } } over {μ rSub { size 8{0} } } } g} {} (1.10)

F = φ ( l c μA c + g μ 0 A g ) size 12{F=φ \( { {l rSub { size 8{c} } } over {μA rSub { size 8{c} } } } + { {g} over {μ rSub { size 8{0} } A rSub { size 8{g} } } } \) } {} (1.11)

  • R c size 12{R rSub { size 8{c} } } {} , R g size 12{R rSub { size 8{g} } } {} : the reluctance of the core and the air gap, respectively,

R c = l c μA c size 12{R rSub { size 8{c} } = { {l rSub { size 8{c} } } over {μA rSub { size 8{c} } } } } {} (1.12)

R g = g μ 0 A g size 12{R rSub { size 8{g} } = { {g} over {μ rSub { size 8{0} } A rSub { size 8{g} } } } } {} (1.13)

F = φ ( R c + R g ) size 12{F=φ \( R rSub { size 8{c} } +R rSub { size 8{g} } \) } {} (1.14)

φ = F R c + R g size 12{φ= { {F} over {R rSub { size 8{c} } +R rSub { size 8{g} } } } } {} (1.15)

φ = F l c μA c + g μ 0 A g size 12{φ= { {F} over { { {l rSub { size 8{c} } } over {μA rSub { size 8{c} } } } + { {g} over {μ rSub { size 8{0} } A rSub { size 8{g} } } } } } } {} (1.16)

  • In general, for any magnetic circuit of total reluctance R tot size 12{R rSub { size 8{ ital "tot"} } } {} , the flux can be found as

φ = F R tot size 12{φ= { {F} over {R rSub { size 8{ ital "tot"} } } } } {} (1.17)

The permeance P is the inverse of the reluctance

P tot = 1 R tot size 12{P rSub { size 8{ ital "tot"} } = { {1} over {R rSub { size 8{ ital "tot"} } } } } {} (1.18)

  • Fig. 1.3: Analogy between electric and magnetic circuits:

Figure 1.3:Analogy between electric and magnetic circuits: (a) electric ckt, (b) magnetic ckt.

  • Note that with high material permeability: R c << R g size 12{R rSub { size 8{c} } "<<"R rSub { size 8{g} } } {} and thus R tot << R g size 12{R rSub { size 8{ ital "tot"} } "<<"R rSub { size 8{g} } } {}

φ F R g = 0 A g g = Ni μ 0 A g g size 12{φ approx { {F} over {R rSub { size 8{g} } } } = { {Fμ rSub { size 8{0} } A rSub { size 8{g} } } over {g} } = ital "Ni" { {μ rSub { size 8{0} } A rSub { size 8{g} } } over {g} } } {} (1.19)

  • Fig. 1.4: Fringing effect, effective A g size 12{A rSub { size 8{g} } } {} increased.

Figure 1.4 Air-gap fringing fields.

  • In general, magnetic circuits can consist of multiple elements in series and parallel.

F = Hdl = k F k = k H k l k size 12{F= lInt { ital "Hdl"= Sum cSub { size 8{k} } {F rSub { size 8{k} } } } = Sum cSub { size 8{k} } {H rSub { size 8{k} } l rSub { size 8{k} } } } {} (1.20)

F = s J . da size 12{F= Int rSub { size 8{s} } {J "." ital "da"} } {} (1.21)

V = k R k i k size 12{V= Sum cSub { size 8{k} } {R rSub { size 8{k} } i rSub { size 8{k} } } } {} (1.22)

n i n = 0 size 12{ Sum cSub { size 8{n} } {i rSub { size 8{n} } } =0} {} (1.23)

n φ n = 0 size 12{ Sum cSub { size 8{n} } {φ rSub { size 8{n} } } =0} {} (1.24)

§1.2 Flux Linkage, Inductance, and Energy

  • Faraday’s Law:

c E . ds = d dt s B . da size 12{ lInt rSub { size 8{c} } {E "." ital "ds"} = - { {d} over { ital "dt"} } Int rSub { size 8{s} } {B "." ital "da"} } {} (1.25)

  • λ size 12{λ} {} : the flux linkage of the winding, ϕ size 12{ϕ} {} : the instantaneous value of a time-varying flux,
  • e : the induced voltage at the winding terminals

e = N dt = dt λ = alignl { stack { size 12{e=N { {dϕ} over { ital "dt"} } = { {dλ} over { ital "dt"} } } {} #size 12{λ=Nϕ} {} } } {} (1.26)

  • L : the inductance (with material of constant permeability), H = Wb-t/A

L = λ i size 12{L= { {λ} over {i} } } {} (1.27)

L = N 2 R tot size 12{L= { {N rSup { size 8{2} } } over {R rSub { size 8{ ital "tot"} } } } } {} (1.28)

  • The inductance of the winding in Fig. 1.2:

L = N 2 ( g / μ 0 A g ) = N 2 μ 0 A g g size 12{L= { {N rSup { size 8{2} } } over { \( g/μ rSub { size 8{0} } A rSub { size 8{g} } \) } } = { {N rSup { size 8{2} } μ rSub { size 8{0} } A rSub { size 8{g} } } over {g} } } {} (1.29)

  • Magnetic circuit with more than one windings, Fig. 1.5:

Figure 1.5Magnetic circuit with two windings.

F = N 1 i 1 + N 2 i 2 size 12{F=N rSub { size 8{1} } i rSub { size 8{1} } +N rSub { size 8{2} } i rSub { size 8{2} } } {} (1.30)

φ = ( N 1 i 1 + N 2 i 2 ) μ 0 A c g size 12{φ= \( N rSub { size 8{1} } i rSub { size 8{1} } +N rSub { size 8{2} } i rSub { size 8{2} } \) { {μ rSub { size 8{0} } A rSub { size 8{c} } } over {g} } } {} (1.31)

λ 1 = N 1 φ = N 1 2 ( μ 0 A c g ) i 1 + N 1 N 2 ( μ 0 A c g ) i 2 size 12{λ rSub { size 8{1} } =N rSub { size 8{1} } φ=N rSub { size 8{1} } rSup { size 8{2} } \( { {μ rSub { size 8{0} } A rSub { size 8{c} } } over {g} } \) i rSub { size 8{1} } +N rSub { size 8{1} } N rSub { size 8{2} } \( { {μ rSub { size 8{0} } A rSub { size 8{c} } } over {g} } \) i rSub { size 8{2} } } {} (1.32)

λ 1 = L 11 i 1 + L 12 i 2 size 12{λ rSub { size 8{1} } =L rSub { size 8{"11"} } i rSub { size 8{1} } +L rSub { size 8{"12"} } i rSub { size 8{2} } } {} (1.33)

L 11 = N 1 2 μ 0 A c g size 12{L rSub { size 8{"11"} } =N rSub { size 8{1} } rSup { size 8{2} } { {μ rSub { size 8{0} } A rSub { size 8{c} } } over {g} } } {} (1.34)

L 12 = N 1 N 2 μ 0 A c g = L 21 size 12{L rSub { size 8{"12"} } =N rSub { size 8{1} } N rSub { size 8{2} } { {μ rSub { size 8{0} } A rSub { size 8{c} } } over {g} } =L rSub { size 8{"21"} } } {} (1.35)

λ 2 = N 2 φ = N 1 N 2 ( μ 0 A c g ) i 1 + N 2 2 ( μ 0 A c g ) i 2 size 12{λ rSub { size 8{2} } =N rSub { size 8{2} } φ=N rSub { size 8{1} } N rSub { size 8{2} } \( { {μ rSub { size 8{0} } A rSub { size 8{c} } } over {g} } \) i rSub { size 8{1} } +N rSub { size 8{2} } rSup { size 8{2} } \( { {μ rSub { size 8{0} } A rSub { size 8{c} } } over {g} } \) i rSub { size 8{2} } } {} (1.36)

λ 2 = L 21 i 1 + L 22 i 2 size 12{λ rSub { size 8{2} } =L rSub { size 8{"21"} } i rSub { size 8{1} } +L rSub { size 8{"22"} } i rSub { size 8{2} } } {} (1.37)

L 22 = N 2 2 μ 0 A c g size 12{L rSub { size 8{"22"} } =N rSub { size 8{2} } rSup { size 8{2} } { {μ rSub { size 8{0} } A rSub { size 8{c} } } over {g} } } {} (1.38)

  • Induced voltage, power (W = J/s), and stored energy:

e = d dt ( Li ) size 12{e= { {d} over { ital "dt"} } \( ital "Li" \) } {} (1.39)

e = L di dt + i dL dt size 12{e=L { { ital "di"} over { ital "dt"} } +i { { ital "dL"} over { ital "dt"} } } {} (1.40)

p = ie = i dt size 12{p= ital "ie"=i { {dλ} over { ital "dt"} } } {} (1.41)

ΔW = t 1 t 2 pdt = λ 1 λ 2 id λ size 12{ΔW= Int rSub { size 8{t rSub { size 6{1} } } } rSup {t rSub { size 6{2} } } { ital "pdt"} size 12{ {}= Int rSub {λ rSub { size 6{1} } } rSup {λ rSub { size 6{2} } } { ital "id"λ} }} {} (1.42)

ΔW = λ 1 λ 2 id λ = λ 1 λ 2 λ L = 1 2L ( λ 2 2 λ 1 1 ) size 12{ΔW= Int rSub { size 8{λ rSub { size 6{1} } } } rSup {λ rSub { size 6{2} } } { ital "id"λ} size 12{ {}= Int rSub {λ rSub { size 6{1} } } rSup {λ rSub { size 6{2} } } { { {λ} over {L} } } } size 12{dλ= { {1} over {2L} } \( λ rSub {2} rSup {2} } size 12{ - λ rSub {1} rSup {1} } size 12{ \) }} {} (1.43)

W = 1 2L λ 2 = L 2 i 2 size 12{W= { {1} over {2L} } λ rSup { size 8{2} } = { {L} over {2} } i rSup { size 8{2} } } {} (1.44)

§1.3 Properties of Magnetic Materials

  • The importance of magnetic materials is twofold:
  • Magnetic materials are used to obtain large magnetic flux densities with relatively low levels of magnetizing force.
  • Magnetic materials can be used to constrain and direct magnetic fields in well defined paths.
  • Ferromagnetic materials, typically composed of iron and alloys of iron with cobalt, tungsten, nickel, aluminum, and other metals, are by far the most common magnetic materials.
  • They are found to be composed of a large number of domains.
  • When unmagnetized, the domain magnetic moments are randomly oriented.
  • When an external magnetizing force is applied, the domain magnetic moments tend to align with the applied magnetic field until all the magnetic moments are aligned with the applied field, and the material is said to be fully saturated.
  • When the applied field is reduced to zero, the magnetic dipole moments will no longer be totally random in their orientation and will retain a net magnetization component along the applied field direction.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Electrical machines. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10767/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Electrical machines' conversation and receive update notifications?

Ask