<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Explain the form and function of a rate law
  • Use rate laws to calculate reaction rates
  • Use rate and concentration data to identify reaction orders and derive rate laws

As described in the previous module, the rate of a reaction is affected by the concentrations of reactants. Rate laws or rate equations are mathematical expressions that describe the relationship between the rate of a chemical reaction and the concentration of its reactants. In general, a rate law (or differential rate law, as it is sometimes called) takes this form:

rate = k [ A ] m [ B ] n [ C ] p

in which [ A ], [ B ], and [ C ] represent the molar concentrations of reactants, and k is the rate constant , which is specific for a particular reaction at a particular temperature. The exponents m , n , and p are usually positive integers (although it is possible for them to be fractions or negative numbers). The rate constant k and the exponents m , n , and p must be determined experimentally by observing how the rate of a reaction changes as the concentrations of the reactants are changed. The rate constant k is independent of the concentration of A , B , or C , but it does vary with temperature and surface area.

The exponents in a rate law describe the effects of the reactant concentrations on the reaction rate and define the reaction order    . Consider a reaction for which the rate law is:

rate = k [ A ] m [ B ] n

If the exponent m is 1, the reaction is first order with respect to A . If m is 2, the reaction is second order with respect to A . If n is 1, the reaction is first order in B . If n is 2, the reaction is second order in B . If m or n is zero, the reaction is zero order in A or B , respectively, and the rate of the reaction is not affected by the concentration of that reactant. The overall reaction order    is the sum of the orders with respect to each reactant. If m = 1 and n = 1, the overall order of the reaction is second order ( m + n = 1 + 1 = 2).

The rate law:

rate = k [ H 2 O 2 ]

describes a reaction that is first order in hydrogen peroxide and first order overall. The rate law:

rate = k [ C 4 H 6 ] 2

describes a reaction that is second order in C 4 H 6 and second order overall. The rate law:

rate = k [ H + ] [ OH ]

describes a reaction that is first order in H + , first order in OH , and second order overall.

Writing rate laws from reaction orders

An experiment shows that the reaction of nitrogen dioxide with carbon monoxide:

NO 2 ( g ) + CO( g ) NO( g ) + CO 2 ( g )

is second order in NO 2 and zero order in CO at 100 °C. What is the rate law for the reaction?

Solution

The reaction will have the form:

rate = k [ NO 2 ] m [ CO ] n

The reaction is second order in NO 2 ; thus m = 2. The reaction is zero order in CO; thus n = 0. The rate law is:

rate = k [ NO 2 ] 2 [ CO ] 0 = k [ NO 2 ] 2

Remember that a number raised to the zero power is equal to 1, thus [CO] 0 = 1, which is why we can simply drop the concentration of CO from the rate equation: the rate of reaction is solely dependent on the concentration of NO 2 . When we consider rate mechanisms later in this chapter, we will explain how a reactant’s concentration can have no effect on a reaction despite being involved in the reaction.

Check your learning

The rate law for the reaction:

H 2 ( g ) + 2 NO( g ) N 2 O( g ) + H 2 O( g )

has been determined to be rate = k [NO] 2 [H 2 ]. What are the orders with respect to each reactant, and what is the overall order of the reaction?

Answer:

order in NO = 2; order in H 2 = 1; overall order = 3

Check your learning

In a transesterification reaction, a triglyceride reacts with an alcohol to form an ester and glycerol. Many students learn about the reaction between methanol (CH 3 OH) and ethyl acetate (CH 3 CH 2 OCOCH 3 ) as a sample reaction before studying the chemical reactions that produce biodiesel:

CH 3 OH + CH 3 CH 2 OCOCH 3 CH 3 OCOCH 3 + CH 3 CH 2 OH

The rate law for the reaction between methanol and ethyl acetate is, under certain conditions, determined to be:

rate = k [ CH 3 OH ]

What is the order of reaction with respect to methanol and ethyl acetate, and what is the overall order of reaction?

Answer:

order in CH 3 OH = 1; order in CH 3 CH 2 OCOCH 3 = 0; overall order = 1

Got questions? Get instant answers now!

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Ut austin - principles of chemistry. OpenStax CNX. Mar 31, 2016 Download for free at http://legacy.cnx.org/content/col11830/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Ut austin - principles of chemistry' conversation and receive update notifications?

Ask