<< Chapter < Page Chapter >> Page >

We will make the assumption that A(u) is wide sense stationary, that is its statistics are invariant over the range of u:

E A ( u ) A ( v ) = R A ( u v ) size 12{E left lbrace A rSup { size 8{*} } \( u \) A \( v \) right rbrace =R rSub { size 8{A} } \( u - v \) } {}

Furthermore, we will assume that A(u) is spatially white, e.g. the scattering elements are uncorrelated with each other:

E A ( u ) A ( v ) = R A ( u v ) = R A δ ( u v ) size 12{E left lbrace A \( u \) rSup { size 8{*} } A \( v \) right rbrace =R rSub { size 8{A} } \( u - v \) =R rSub { size 8{A} }δ\( u - v \) } {}

Now, these two assumptions, that the reflection coefficient statistics are independent of range and each differential patch is statistically independent of each other is only an approximation to the real situation. However, these approximations allow one to see the interaction of reverberation and waveform selection.

E m R 2 ( t , η ) = E E T 0 A ( u ) Γ ( u ) χ ( t τ ( u ) , η ) d u 0 A ( φ ) Γ ( φ ) χ ( t τ ( φ ) , η ) d φ size 12{E left lbrace m rSub { size 8{R} } rSup { size 8{2} } \( t,η\) right rbrace =E left lbrace E rSub { size 8{T} } Int cSub { size 8{0} } cSup { size 8{ infinity } } {A \( u \)Γ\( u \)χ\( t -τ\( u \) ,η\) d} u Int cSub { size 8{0} } cSup { size 8{ infinity } } {A \(φ\)Γ\(φ\)χ\( t -τ\(φ\) ,η\) d}φright rbrace } {}

Rearranging,

E m R 2 ( t , η ) = E T 0 0 E A ( u ) A ( φ ) Γ ( u ) Γ ( φ ) χ ( t τ ( u ) , η ) χ ( t τ ( φ ) , η ) d ud φ size 12{E left lbrace m rSub { size 8{R} } rSup { size 8{2} } \( t,η\) right rbrace =E rSub { size 8{T} } Int cSub { size 8{0} } cSup { size 8{ infinity } } { Int cSub { size 8{0} } cSup { size 8{ infinity } } {E left lbrace A \( u \) A \(φ\) right rbraceΓ\( u \)Γ\(φ\)χ\( t -τ\( u \) ,η\)χ\( t -τ\(φ\) ,η\) d} } ital "ud"φ} {}

Using the covariance of the scattering elements we get,

E m R 2 ( t , η ) = E T 0 0 R A δ ( u φ ) Γ ( u ) Γ ( φ ) χ ( t τ ( u ) , η ) χ ( t τ ( φ ) , η ) d ud φ size 12{E left lbrace m rSub { size 8{R} } rSup { size 8{2} } \( t,η\) right rbrace =E rSub { size 8{T} } Int cSub { size 8{0} } cSup { size 8{ infinity } } { Int cSub { size 8{0} } cSup { size 8{ infinity } } {R rSub { size 8{A} }δ\( u -φ\)Γ\( u \)Γ\(φ\)χ\( t -τ\( u \) ,η\)χ\( t -τ\(φ\) ,η\) d} } ital "ud"φ} {}

Or,

E m R 2 ( t , η ) = E T R A 0 Γ ( u ) 2 χ 2 ( t τ ( u ) , η ) d u size 12{E left lbrace m rSub { size 8{R} } rSup { size 8{2} } \( t,η\) right rbrace =E rSub { size 8{T} } R rSub { size 8{A} } Int cSub { size 8{0} } cSup { size 8{ infinity } } { llineΓ\( u \) rline rSup { size 8{2} }χrSup { size 8{2} } \( t -τ\( u \) ,η\) d} u} {}

To see this more clearly, assume that the transmission loss term Γ ( u ) size 12{Γ\( u \) } {} is approximately constant over the transmitted signal’s correlation time and receiver’s beam pattern. Then we obtain

E m R 2 ( t , η ) = E T R A Γ ( u 0 ) 2 0 χ 2 ( t τ ( u ) , η ) d u size 12{E left lbrace m rSub { size 8{R} } rSup { size 8{2} } \( t,η\) right rbrace =E rSub { size 8{T} } R rSub { size 8{A} } llineΓ\( u rSub { size 8{0} } \) rline rSup { size 8{2} } Int cSub { size 8{0} } cSup { size 8{ infinity } } {χrSup { size 8{2} } \( t -τ\( u \) ,η\) d} u} {}

Where u 0 size 12{u rSub { size 8{0} } } {} is defined by τ ( u 0 ) = t size 12{τ\( u rSub { size 8{0} } \) =t} {} .

If we assume that the time delay varies smoothly with respect to range, we can replace the integration over u with an integration over time delay τ size 12{τ} {} , where we assume that the chance of variable from u to τ size 12{τ} {} is approximately given by τ = 2u / c size 12{τ=2u/c} {} , where c is the speed of sound. This is assuming an approximate monostatic geometry, or that the patch of reverberation is far away relative to the source receiver separation.

We then get

E m R 2 ( t , η ) = E T R A Γ ( u 0 ) 2 c / 2 0 χ 2 ( t τ , η ) d τ size 12{E left lbrace m rSub { size 8{R} } rSup { size 8{2} } \( t,η\) right rbrace =E rSub { size 8{T} } R rSub { size 8{A} } llineΓ\( u rSub { size 8{0} } \) rline rSup { size 8{2} } c/2 Int cSub { size 8{0} } cSup { size 8{ infinity } } {χrSup { size 8{2} } \( t -τ,η\) d}τ} {}

If we assume that the matched filter time t is greater than the signal duration T, then letting τ ' = t τ size 12{ { {τ}} sup { ' }=t -τ} {} , we obtain

E m R 2 ( t , η ) = E T R A Γ ( u 0 ) 2 c / 2 χ 2 ( t τ , η ) d τ size 12{E left lbrace m rSub { size 8{R} } rSup { size 8{2} } \( t,η\) right rbrace =E rSub { size 8{T} } R rSub { size 8{A} } llineΓ\( u rSub { size 8{0} } \) rline rSup { size 8{2} } c/2 Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } {χrSup { size 8{2} } \( t -τ,η\) d}τ} {}

We define the Q-function of the waveform as

Q ( η ) = χ ( τ ' , η ) 2 d τ ' size 12{Q \(η\) = Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } { llineχ\( { {τ}} sup { ' },η\) rline rSup { size 8{2} } d} { {τ}} sup { ' }} {}

Note that Q ( η ) size 12{Q \(η\) } {} has units of seconds^2. We call a waveform with a sharp peak in Q ( η ) size 12{Q \(η\) } {} as a Doppler Sensitive Waveform (DSW). A sine wave pulse will have a sharp peak in Q ( η ) size 12{Q \(η\) } {} for instance.

When the narrowband ambiguity function is used the Q function is normalized:

Q NB ( φ ) = χ NB ( τ ' , φ ) 2 d τ ' = 1 size 12{ Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } {Q rSub { size 8{ ital "NB"} } \(φ\) } dφ= Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } { llineχrSub { size 8{ ital "NB"} } \( { {τ}} sup { ' },φ\) rline rSup { size 8{2} } d} { {τ}} sup { ' }dφ=1} {}

The wideband waveform Q function is approximately normalized to unity.

The reverberation response can be written as

E m R 2 ( t , η ) = E T R A Γ ( u 0 ) 2 Q ( η ) c / 2 size 12{E left lbrace m rSub { size 8{R} } rSup { size 8{2} } \( t,η\) right rbrace =E rSub { size 8{T} } R rSub { size 8{A} } llineΓ\( u rSub { size 8{0} } \) rline rSup { size 8{2} } Q \(η\) c/2} {}

Clearly, the best waveform to use for detection depends on the assumed target velocity. Waveforms such as HFM and LFM have low Q-functions that are relatively constant across Doppler. Doppler sensitive waveforms often have lower Q-functions at higher Doppler shifts than LFM and HFM, much higher Q functions near zero Doppler. To best search for targets, one needs waveforms optimized for both low and high Doppler targets.

So far, this has been a deterministic description of the matched filter response to reverberation.

Channel doppler effects on reverberation

In reality, the reflection coefficient or the transmission loss term will be time varying (as well as spatially varying) because of the surface of the ocean having waves, and the internal thermal structure of the ocean channel will be time varying.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signal and information processing for sonar. OpenStax CNX. Dec 04, 2007 Download for free at http://cnx.org/content/col10422/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signal and information processing for sonar' conversation and receive update notifications?

Ask