<< Chapter < Page Chapter >> Page >

Discrete time matched filters

Discrete time filters have nearly the same properties as continuous time filters. In discrete time, we assume an echo of e ( k ) = E R r ( k ) size 12{e \( k \) = sqrt {E rSub { size 8{R} } } r \( k \) } {} , with k = 1 T r 2 ( k ) = 1 size 12{ Sum cSub { size 8{k=1} } cSup { size 8{T} } {r rSup { size 8{2} } \( k \) } =1} {} . The discrete matched filter output to the input y(k) is given by:

m ( k ) = l = k k + T 1 y ( l ) r ( l k + 1 ) size 12{m \( k \) = Sum cSub { size 8{l=k} } cSup { size 8{k+T - 1} } {y \( l \) r \( l - k+1 \) } } {}

In response to the echo, y ( k ) = e ( k T D ) size 12{y \( k \) =e \( k - T rSub { size 8{D} } \) } {} the output of the discrete time matched filter is

m ( k ) = l = k k + T 1 e ( l T D ) r ( l k + 1 ) = E R l = k k + T 1 r ( l T D ) r ( l k + 1 ) size 12{m \( k \) = Sum cSub { size 8{l=k} } cSup { size 8{k+T - 1} } {e \( l - T rSub { size 8{D} } \) r \( l - k+1 \) } = sqrt {E rSub { size 8{R} } } Sum cSub { size 8{l=k} } cSup { size 8{k+T - 1} } {r \( l - T rSub { size 8{D} } \) r \( l - k+1 \) } } {}

Hence m ( T D 1 ) = E R size 12{m \( T rSub { size 8{D} } - 1 \) = sqrt {E rSub { size 8{R} } } } {} . The peak power output of the matched filter, m 2 ( t ) size 12{m rSup { size 8{2} } \( t \) } {} , in response to a echo is E R size 12{E rSub { size 8{R} } } {} .

We determine the discrete matched filter response to noise next. Assume the input noise is sampled white with variance AN 0 size 12{ ital "AN" rSub { size 8{0} } } {} :

E n ( k ) n ( l ) = AN 0 δ kl size 12{E left lbrace n \( k \) n \( l \) right rbrace = ital "AN" rSub { size 8{0} }δrSub { size 8{ ital "kl"} } } {}

E m ( k ) m ( p ) = E l = k k + T 1 n ( l ) r ( l k + 1 ) i = p p + T 1 n ( i ) r ( i p + 1 ) = AN 0 l = k k + T 1 i = p p + T 1 δ li r ( l k + 1 ) r ( i p + 1 ) = AN 0 l = k k + T 1 r 2 ( l k + 1 ) = AN 0 alignl { stack { size 12{E left lbrace m \( k \) m \( p \) right rbrace =E left lbrace Sum cSub { size 8{l=k} } cSup { size 8{k+T - 1} } {n \( l \) r \( l - k+1 \) Sum cSub { size 8{i=p} } cSup { size 8{p+T - 1} } {n \( i \) r \( i - p+1 \) } } right rbrace ={}} {} #ital "AN" rSub { size 8{0} } Sum cSub { size 8{l=k} } cSup { size 8{k+T - 1} } { Sum cSub { size 8{i=p} } cSup { size 8{p+T - 1} } {} }δrSub { size 8{ ital "li"} } r \( l - k+1 \) r \( i - p+1 \) = ital "AN" rSub { size 8{0} } Sum cSub { size 8{l=k} } cSup { size 8{k+T - 1} } {r rSup { size 8{2} } \( l - k+1 \) } = ital "AN" rSub { size 8{0} } {} } } {}

Thus, the signal to noise ratio at the output of a discrete time matched filter is E R / AN 0 size 12{E rSub { size 8{R} } / ital "AN" rSub { size 8{0} } } {} .

The matched filter compresses the echo signal to a pulse (or a series of pulses for waveforms such as SFM) with time width equal approximately to its inverse bandwidth, 1/BW.

Matched filter response to reverberation

One model for reverberation assumes that the reverberation comes from distributed discrete scatterers, with density A ( u ) size 12{A \( u \) } {} .

y ( t ) = E T 0 A ( u ) Γ ( u ) r ( t τ ( u ) ) d u size 12{y \( t \) = sqrt {E rSub { size 8{T} } } Int cSub { size 8{0} } cSup { size 8{ infinity } } {A \( u \)Γ\( u \) r \( t -τ\( u \) \) d} u} {} ,

A ( u ) size 12{A \( u \) } {} is considered a random, spatial process that models the amplitude of the scattering that occurs at range u back to the receiver. We are assuming that the receiver has significant aperture, and that y(t) is the receiver response at the output of a beamformer. In this case, scattering is occurring from the patch of the ocean bottom or surface that lies at range u and within the receiver beamwidth in azimuth and elevation. Each patch of the bottom or surface will arrive at the receiver at a different time. Γ ( u ) size 12{Γ\( u \) } {} is the transmission loss from the source to the scattering range (u) and back to the receiver. τ ( u ) size 12{τ\( u \) } {} is the total travel time from source to scatterer to receiver. As one can see, the reverberation is made up of many time delayed and amplitude scaled replicas of the transmitted waveform.

The matched filter response to the reverberation is

m R ( t ) = t t + T r ( σ t ) E T 0 A ( u ) Γ ( u ) r ( σ τ ( u ) ) d u = E T 0 A ( u ) Γ ( u ) t t + T r ( σ τ ( u ) ) r ( σ t ) dσd u alignl { stack { size 12{m rSub { size 8{R} } \( t \) = Int rSub { size 8{t} } rSup { size 8{t+T} } {r \(σ- t \) sqrt {E rSub { size 8{T} } } Int cSub { size 8{0} } cSup { size 8{ infinity } } {A \( u \)Γ\( u \) r \(σ-τ\( u \) \) d} u} dσ={}} {} # sqrt {E rSub { size 8{T} } } Int cSub { size 8{0} } cSup { size 8{ infinity } } {A \( u \)Γ\( u \) Int rSub { size 8{t} } rSup { size 8{t+T} } {r \(σ-τ\( u \) \) r \(σ- t \) } dσd} u {} } } {}

We define the transmitted waveform autocorrelation function as

χ ( τ ) = 0 T r ( t τ ) r ( t ) dt size 12{χ\(τ\) = Int rSub { size 8{0} } rSup { size 8{T} } {r \( t -τ\) } r \( t \) ital "dt"} {}

Recall, that by definition, χ ( 0 ) = 0 T r 2 ( t ) dt = 1 size 12{χ\( 0 \) = Int rSub { size 8{0} } rSup { size 8{T} } {r rSup { size 8{2} } \( t \) } ital "dt"=1} {} . In more general terms, we define the transmitted wideband signal ambiguity function as

χ WB ( τ , η ) = η r ( η ( t τ ) ) r ( t ) dt size 12{χrSub { size 8{ ital "WB"} } \(τ,η\) = sqrt {η} Int rSub { size 8{ - infinity } } rSup { size 8{ infinity } } {r rSup { size 8{*} } \(η\( t -τ\) \) } r \( t \) ital "dt"} {}

Note: Some authors define the ambiguity function as the magnitude squared value of this definition. Other authors choose different normalizations or the sign (-/+) on the delay term τ size 12{τ} {} .

In the wideband signal ambiguity function, the Doppler effect is represented by the scaling factor η size 12{η} {} . In narrowband cases, the Doppler effect is represented by a frequency shift, φ size 12{φ} {} . For a monostatic sonar the frequency shift is given by φ = 2 v/c size 12{φ=2 ital "v/c"} {} , where v size 12{v} {} is the radial velocity between the scattering object and the sonar system.

χ NB ( τ , φ ) = r ( t τ ) r ( t ) e j2 πφ t dt size 12{χrSub { size 8{ ital "NB"} } \(τ,φ\) = Int rSub { size 8{ - infinity } } rSup { size 8{ infinity } } {r rSup { size 8{*} } \( t -τ\) } r \( t \) e rSup { size 8{ - j2 ital "πφ"t} } ital "dt"} {}

One can show (Weiss) that the narrowband approximation to Doppler is valid if 2 v/c << 1 BT size 12{2 ital "v/c""<<" { {1} over { ital "BT"} } } {} , where B size 12{B} {} is the waveform bandwidth and T size 12{T} {} is the duration. For one hundred (100) Hertz bandwidth waveforms that last for one (1) second, the speed of the target must be much less than 7.5 m/sec, or approximately 15 knots.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signal and information processing for sonar. OpenStax CNX. Dec 04, 2007 Download for free at http://cnx.org/content/col10422/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signal and information processing for sonar' conversation and receive update notifications?

Ask