<< Chapter < Page Chapter >> Page >
Power dissipation in resistor circuits.

We can find voltages and currents in simple circuits containing resistors and voltage or current sources.We should examine whether these circuits variables obey the Conservation of Power principle:since a circuit is a closed system, it should not dissipate or create energy.For the moment, our approach is to investigate first a resistor circuit's power consumption/creation. Later, we will prove that because of KVL and KCL all circuits conserve power.

As defined on [link] , the instantaneous power consumed/created by every circuit element equals the product of itsvoltage and current. The total power consumed/created by a circuit equals the sum of eachelement's power. P k k v k i k Recall that each element's current and voltage must obey the convention that positive current is defined to enter the positive-voltage terminal.With this convention, a positive value of v k i k corresponds to consumed power, a negative value to created power. Because the total power in a circuit must be zero( P 0 ), some circuit elements must create power while others consume it.

Consider the simple series circuit should in [link] . In performing our calculations, we defined the current i out to flow through the positive-voltage terminals of both resistors and found it to equal i out v in R 1 R 2 . The voltage across the resistor R 2 is the output voltage and we found it to equal v out R 2 R 1 R 2 v in . Consequently, calculating the power for this resistor yields P 2 R 2 R 1 R 2 2 v in 2 Consequently, this resistor dissipates power because P 2 is positive. This result should not be surprising since we showed that the power consumedby any resistor equals either of the following.

v 2 R   or   i 2 R
Since resistors are positive-valued, resistors always dissipate power . But where does a resistor's power go?By Conservation of Power, the dissipated power must be absorbed somewhere. The answer is not directly predicted by circuit theory, but is by physics.Current flowing through a resistor makes it hot; its power is dissipated by heat.
A physical wire has a resistance and hence dissipates power (it gets warm just like a resistor in a circuit).In fact, the resistance of a wire of length L and cross-sectional area A is given by R ρ L A The quantity ρ is known as the resistivity and presents the resistance of a unit-length, unit cross-sectional area material constituting the wire.Resistivity has units of ohm-meters. Most materials have a positive value for ρ , which means the longer the wire, the greater the resistance and thus thepower dissipated. The thicker the wire, the smaller the resistance.Superconductors have zero resistivity and hence do not dissipate power. If a room-temperature superconductor could be found, electric power could besent through power lines without loss!

Calculate the power consumed/created by the resistor R 1 in our simple circuit example.

The power consumed by the resistor R 1 can be expressed as v in v out i out R 1 R 1 R 2 2 v in 2

Got questions? Get instant answers now!

We conclude that both resistors in our example circuit consume power, which points to the voltage source as the producer of power.The current flowing into the source's positive terminal is i out . Consequently, the power calculation for the source yields v in i out 1 R 1 R 2 v in 2 We conclude that the source provides the power consumed by the resistors, no more, no less.

Confirm that the source produces exactly the total power consumed by both resistors.

1 R 1 R 2 v in 2 R 1 R 1 R 2 2 v in 2 R 2 R 1 R 2 2 v in 2

Got questions? Get instant answers now!

This result is quite general: sources produce power and the circuit elements, especially resistors,consume it. But where do sources get their power?Again, circuit theory does not model how sources are constructed, but the theory decrees that all sources must be provided energy to work.

Questions & Answers

Ayele, K., 2003. Introductory Economics, 3rd ed., Addis Ababa.
Widad Reply
can you send the book attached ?
Ariel
?
Ariel
What is economics
Widad Reply
the study of how humans make choices under conditions of scarcity
AI-Robot
U(x,y) = (x×y)1/2 find mu of x for y
Desalegn Reply
U(x,y) = (x×y)1/2 find mu of x for y
Desalegn
what is ecnomics
Jan Reply
this is the study of how the society manages it's scarce resources
Belonwu
what is macroeconomic
John Reply
macroeconomic is the branch of economics which studies actions, scale, activities and behaviour of the aggregate economy as a whole.
husaini
etc
husaini
difference between firm and industry
husaini Reply
what's the difference between a firm and an industry
Abdul
firm is the unit which transform inputs to output where as industry contain combination of firms with similar production 😅😅
Abdulraufu
Suppose the demand function that a firm faces shifted from Qd  120 3P to Qd  90  3P and the supply function has shifted from QS  20  2P to QS 10  2P . a) Find the effect of this change on price and quantity. b) Which of the changes in demand and supply is higher?
Toofiq Reply
explain standard reason why economic is a science
innocent Reply
factors influencing supply
Petrus Reply
what is economic.
Milan Reply
scares means__________________ends resources. unlimited
Jan
economics is a science that studies human behaviour as a relationship b/w ends and scares means which have alternative uses
Jan
calculate the profit maximizing for demand and supply
Zarshad Reply
Why qualify 28 supplies
Milan
what are explicit costs
Nomsa Reply
out-of-pocket costs for a firm, for example, payments for wages and salaries, rent, or materials
AI-Robot
concepts of supply in microeconomics
David Reply
economic overview notes
Amahle Reply
identify a demand and a supply curve
Salome Reply
i don't know
Parul
there's a difference
Aryan
Demand curve shows that how supply and others conditions affect on demand of a particular thing and what percent demand increase whith increase of supply of goods
Israr
Hi Sir please how do u calculate Cross elastic demand and income elastic demand?
Abari
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask